Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yiwei, LI Benhang, WEI Zizhang, LIU Xiaoyao, HE Xu, LIANG Gaolei, MA Xiaodong. PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 112-120. doi: 10.13205/j.hjgc.202410014
Citation: YUAN Ye, GAO Jun, ZHANG Lulu, CHEN Tianming, DING Cheng. RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 69-77. doi: 10.13205/j.hjgc.202311013

RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES

doi: 10.13205/j.hjgc.202311013
  • Received Date: 2023-08-16
    Available Online: 2023-12-25
  • When sewage is transported in municipal sewer pipes, a large amount of hydrogen sulfide (H2S) will be released. This toxic and harmful gas is easy to cause odor, poisoning, and pipeline corrosion. Using a reasonable prediction model to predict the generation of H2S in the pipeline can provide a basis for the subsequent adoption of relevant H2S control measures, and has important practical significance for the planning of the sewage pipeline network. In this paper, the main factors affecting the generation of H2S in the sewage pipeline are analyzed; H2S generation prediction models are classified into two types of traditional statistics and machine learning, and their research progress is summarized; the potential research hotspots and difficulties of H2S prediction model are explored to provide a reference for establishment of H2S prediction model of municipal sewage pipeline.
  • [1]
    YONGSIRI C, VOLLERTSEN J, HVITVED-JACOBSEN T.Influence of wastewater constituents on hydrogen sulfide emission in sewer networks[J].Journal of environmental engineering, 2005, 131(12):1676-1683.
    [2]
    徐海明.间歇通气控制污水管道危害性气体应用探索研究[D].西安:西安建筑科技大学, 2018.
    [3]
    SALEHI R, CHAIPRAPAT S.Single-/triple-stage biotrickling filter treating a H2S-rich biogas stream:statistical analysis of the effect of empty bed retention time and liquid recirculation velocity[J].Journal of the Air & Waste Management Association, 2019, 69(12):1429-1437.
    [4]
    WU L, HU C, LIU W V.The sustainability of concrete in sewer tunnel:a narrative review of acid corrosion in the city of Edmonton, Canada[J].Sustainability, 2018, 10(2):517.
    [5]
    FYTIANOS G, BALTIKAS V, LOUKOVITIS D, et al.Biocorrosion of concrete sewers in Greece:current practices and challenges[J].Sustainability, 2020, 12(7):2638.
    [6]
    GARCÍA J T, GARCÍA-GUERRERO J M, CARRILLO J M, et al.Sanitation network sulfide modeling as a tool for asset management.The case of the city of Murcia (Spain)[J].Sustainability, 2020, 12(18):7643.
    [7]
    KAEMPFER W, BERNDT M.Polymer modified mortar with high resistance to acid to corrosion by biogenic sulfuric acid[C].Proceedings of the IXth Icpic Congress, Bologna, Italy, 14th, 1998.
    [8]
    EL BRAHMI A, ABDERAFI S.Hydrogen sulfide production assessment based on sewage physicochemical properties using artificial neural network[J].Mater Today Proc, 2020.
    [9]
    邓丰, 王镇鑫, 许伟聪, 等.城市生活污水排水管道内硫化氢和甲烷产生机制综述[J].广东化工, 2012, 39:104-105.
    [10]
    ABBA S, HADI S J, SAMMEN S S, et al.Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination[J].Journal of Hydrology, 2020, 587:124974.
    [11]
    ZUO Z, CHANG J, LU Z, et al.Hydrogen sulfide generation and emission in urban sanitary sewer in China:what factor plays the critical role?[J].Environmental Science:Water Research & Technology, 2019, 5(5):839-848.
    [12]
    NIELSEN A.Oxidation and precipitation of sulfide in sewer networks;Section of Environmental Engineering, Aalborg University[D].UNIPRINT, Aalborg University, 2005.
    [13]
    CARRERA L, SPRINGER F, LIPEME-KOUYI G, et al.A review of sulfide emissions in sewer networks:overall approach and systemic modelling[J].Water Science and Technology, 2016, 73(6):1231-1242.
    [14]
    任南琪, 王爱杰, 赵阳国.废水厌氧生物处理中硫酸盐还原菌的生态学研究[M].北京:科学出版社, 2009.
    [15]
    席劲瑛, 胡洪营, 罗彬, 等.城市污水处理厂主要恶臭源的排放规律研究[J].中国给水排水, 2006:99-103.
    [16]
    陈卫, 宋佩娣, 郑兴灿, 等.污水系统中导致硫化氢中毒的影响因素与控制措施[J].给水排水, 2006:15-19.
    [17]
    SENGUPTA A.Preliminary Hydrogen Sulfide Emission Factors and Emission Models for Wastewater Treatment Plant Headworks[D].University of New Orleans, 2014.
    [18]
    YONGSIRI C, VOLLERTSEN J, HVITVED-JACOBSEN T.Effect of temperature on air-water transfer of hydrogen sulfide[J].Journal of Environmental Engineering, 2004, 130(1):104-109.
    [19]
    GERAGHTY P.Ireland's environmental protection agency act 1992:an overview[J].European Environment, 1993, 3(4):10-13.
    [20]
    SHERIEF M, ALY HASSAN A.The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation:Statistical Correlations and an Artificial Neural Network Model[J].Water, 2022, 14(5):791.
    [21]
    NIELSEN A H, VOLLERTSEN J, JENSEN H S, et al.Aerobic and anaerobic transformations of sulfide in a sewer system-field study and model simulations[J].Water Environment Research, 2008, 80(1):16-25.
    [22]
    王智超.城市污水处理厂硫化氢排放特征及释放模型研究[D].北京:清华大学, 2013.
    [23]
    JIANG G, SUN X, KELLER J, et al.Identification of controlling factors for the initiation of corrosion of fresh concrete sewers[J].Water research, 2015, 80:30-40.
    [24]
    GUISASOLA A, SHARMA K R, KELLER J, et al.Development of a model for assessing methane formation in rising main sewers[J].Water Research, 2009, 43(11):2874-2884.
    [25]
    GUTIERREZ O, PARK D, SHARMA K R, et al.Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J].Water research, 2009, 43(9):2549-2557.
    [26]
    HVITVED-JACOBSEN T.Sewer processes:microbial and chemical process engineering of sewer networks[M].CRC press, 2001.
    [27]
    SHARMA K, DE HAAS D W, CORRIE S, et al.Predicting hydrogen sulfide formation in sewers:a new model[J].Water, 2008, 35(2):132-137.
    [28]
    BORIES A, GUILLOT J-M, SIRE Y, et al.Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification[J].Water research, 2007, 41(13):2987-2995.
    [29]
    邓绪伟, 陶敏, 张路, 等.洞庭湖水体异味物质及其与藻类和水质的关系[J].环境科学研究, 2013, 26:16-21.
    [30]
    DEVAI I, DELAUNE R D.Emissions of reduced gaseous sulfur compounds from wastewater sludge:redox effects[J].Environmental engineering science, 2000, 17(1):1-8.
    [31]
    李怀正, 张璐璇, 汤霞, 等.城市排水管道中硫化氢产气原因及影响因素分析[J].环境科学与管理, 2012, 37:95-97, 107.
    [32]
    BOON A G.Septicity in sewers:causes, consequences and containment[J].Water Science and Technology, 1995, 31(7):237-253.
    [33]
    JIANG G, KEATING A, CORRIE S, et al.Dosing free nitrous acid for sulfide control in sewers:results of field trials in Australia[J].Water research, 2013, 47(13):4331-4339.
    [34]
    DELGADO S, ALVAREZ M, RODRIGUEZ-GOMEZ L, et al.H2S generation in a reclaimed urban wastewater pipe.Case study:tenerife (Spain)[J].Water Research, 1999, 33(2):539-547.
    [35]
    SANTRY I.Hydrogen sulfide in sewers[J].Journal (Water Pollution Control Federation), 1963:1580-1588.
    [36]
    GUAN S.Synergistic protection against microbiologically influenced corrosion using a 100% solids polyurethane incorporated with anti-microbial agents.(2000) Available at:http://madisonchemical.com/pdf_tech_papers[J].Synergistic_Protection_Against_MIC.pdf.(Accessed:16th April 2015).
    [37]
    吴迪.污水管道中硫化氢的形成实验及数学模型[D].西安:西安建筑科技大学, 2016.
    [38]
    FOLEY J, YUAN Z, LANT P.Dissolved methane in rising main sewer systems:field measurements and simple model development for estimating greenhouse gas emissions[J].Water Science and Technology, 2009, 60(11):2963-2971.
    [39]
    LAHAV O, SAGIV A, FRIEDLER E.A different approach for predicting H2S (g) emission rates in gravity sewers[J].Water research, 2006, 40(2):259-266.
    [40]
    GARCÍA DE LOMAS J, CORZO A, GONZALEZ J M, et al.Nitrate promotes biological oxidation of sulfide in wastewaters:experiment at plant-scale[J].Biotechnology and bioengineering, 2006, 93(4):801-811.
    [41]
    SUN J, NI B-J, SHARMA K R, et al.Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J].Water research, 2018, 129:58-65.
    [42]
    JOSEPH A P, KELLER J, BUSTAMANTE H, et al.Surface neutralization and H2S oxidation at early stages of sewer corrosion:Influence of temperature, relative humidity and H2S concentration[J].Water research, 2012, 46(13):4235-4245.
    [43]
    SHARMA K R, YUAN Z, DE HAAS D, et al.Dynamics and dynamic modelling of H2S production in sewer systems[J].Water Research, 2008, 42(10/11):2527-2538.
    [44]
    KIM B, LEE J, JANG J, et al.Prediction on the seasonal behavior of hydrogen sulfide using a neural network model[J].TheScientificWorldJournal, 2011, 11:992-1004.
    [45]
    LI X, KHADEMI F, LIU Y, et al.Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion[J].Journal of environmental management, 2019, 234:431-439.
    [46]
    JIANG G, KELLER J, BOND P L, et al.Predicting concrete corrosion of sewers using artificial neural network[J].Water research, 2016, 92:52-60.
    [47]
    POMEROY R D, PARKHURST J D.The forecasting of sulfide build-up rates in sewers[C].Eighth International Conference on Water Pollution Research, 1978:621-628.
    [48]
    LAHAV O, LU Y, SHAVIT U, et al.Modeling hydrogen sulfide emission rates in gravity sewage collection systems[J].Journal of environmental engineering, 2004, 130(11):1382-1389.
    [49]
    PARK K, LEE H, PHELAN S, et al.Mitigation strategies of hydrogen sulphide emission in sewer networks:a review[J].International Biodeterioration & Biodegradation, 2014, 95:251-261.
    [50]
    NIELSEN A H, HVITVED-JACOBSEN T, Vollertsen J.Kinetics and stoichiometry of sulfide oxidation by sewer biofilms[J].Water Research, 2005, 39(17):4119-4125.
    [51]
    MARLENI N, PARK K, LEE T, et al.A methodology for simulating hydrogen sulphide generation in sewer network using EPA SWMM[J].Desalination and Water Treatment, 2015, 54(4/5):1308-1317.
    [52]
    TIAN L, HAN C, ZHANG J, et al.Development of an H2S emission model for wastewater treatment plants[J].Journal of the Air & Waste Management Association, 2021, 71(10):1303-1311.
    [53]
    SALEHI R, CHAIPRAPAT S.Predicting H2S emission from gravity sewer using an adaptive neuro-fuzzy inference system[J].Water Quality Research Journal, 2022, 57(1):20-39.
    [54]
    ZHANG L, DE SCHRYVER P, De Gusseme B, et al.Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:a review[J].Water research, 2008, 42(1/2):1-12.
    [55]
    芮栋妮, 马燕燕, 叶林.机器学习方法在污水处理系统中的应用[J].环境工程, 2022, 40(6):145-153.
    [56]
    YIN W, YUAN Y, CHEN F, et al.High-precision prediction of unionized hydrogen sulfide generation based on limited datasets and its impact on anaerobic digestion of sulfate-rich wastewater[J].Journal of Cleaner Production, 2022, 341:130875.
    [57]
    REGE M A, W.TOCK R.A simple neural network for estimating emission rates of hydrogen sulfide and ammonia from single point sources[J].Journal of the Air & Waste Management Association, 1996, 46(10):953-962.
    [58]
    MJALLI F S, AL-ASHEH S, ALFADALA H E.Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J].Journal of Environmental Management, 2007, 83(3):329-338.
    [59]
    NOURANI V, ELKIRAN G, ABBA S I.Wastewater treatment plant performance analysis using artificial intelligence:an ensemble approach[J].Water Science and Technology, 2018, 78(10):2064-2076.
    [60]
    XU R Z, CAO J S, WU Y, et al.An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process[J].Water Research, 2020, 184:116103.
    [61]
    ZAGHLOUL M S, IORHEMEN O T, HAMZA R A, et al.Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors[J].Water Research, 2021, 189:116657.
  • Relative Articles

    [1]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [2]LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005
    [3]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [4]CHU Yangyang, LI Hui, ZHU Yanping, HAN Xiaomeng, SHU Shihu. A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 38-48. doi: 10.13205/j.hjgc.202407004
    [5]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [6]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [7]QIU Dezhi, CHEN Chun, GUO Li, LIU Dan, MA Jiahui, LEI Miao, LI Tianning, XU Keke, YAN Xu. CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 116-122. doi: 10.13205/j.hjgc.202206015
    [8]XUE Zhaoxia, FENG Qian, FANG Fang, LUO Jingyang, CAO Jiashun, XU Runze. EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
    [9]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [10]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [11]HU Xiangang, LI Jiawei, LI Jiaqiang, JIN Hongye, YU Fubo. SCIENTIFIC QUESTIONS ON THE BIOLOGICAL EFFECTS OF NANOMATERIALS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 171-181. doi: 10.13205/j.hjgc.202206022
    [12]LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
    [13]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [14]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [15]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [16]HE Zhe-xiang, LI Lei. AN AIR POLLUTANT CONCENTRATION PREDICTION MODEL BASED ON WAVELET TRANSFORM AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 111-119. doi: 10.13205/j.hjgc.202103016
    [17]LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016
    [18]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [19]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [20]LOU Dai, ZHANG Guang-zhi, REN Fu-min, XI Cheng-gang. ESTABLISHMENT OF QUANTITATIVE PREDICTION MODEL BASED ON CHARACTERISTICS OF WASTE GENERATED IN UNDERGROUND PIPELINE GALLERY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 9-14,38. doi: 10.13205/j.hjgc.202003002
  • Cited by

    Periodical cited type(7)

    1. 谢作杰,董鹏宇,尹苗,邓永涛,陈希文. 微生态制剂的作用机制及其在家禽健康养殖中的应用. 黑龙江畜牧兽医. 2025(01): 15-19 .
    2. 赵悦,王春霞,赵梅云. 生态养殖模式在畜禽养殖中的应用. 现代农村科技. 2025(02): 77-78 .
    3. 董堃,唐宇坤,周欣雨,黄浩宇,王敦球,李海翔. 桂林市青狮潭水库沉积物抗生素污染特征及风险评估. 农业环境科学学报. 2024(01): 143-151 .
    4. 陈进,王亚娟,陶红,张锐. 规模化养殖园区土壤中抗生素污染特征和生态风险评价. 环境科学. 2024(07): 4302-4311 .
    5. 徐春燕,凌海波,张姝,向罗京,李苇苇,明德,易川. 湖北省四湖流域典型抗生素分布特征及生态风险评估. 安全与环境工程. 2023(05): 213-221 .
    6. 张亚萍,拓田田,李金金. 抗生素在多介质中污染现状研究进展. 山西化工. 2023(09): 50-52 .
    7. 张文斌,赵晶,张秀,王俭,刘灿,杨海蓉. 重庆市水环境中抗生素的污染特征及其风险评价. 生态毒理学报. 2023(06): 314-324 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.3 %FULLTEXT: 16.3 %META: 82.6 %META: 82.6 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.5 %其他: 22.5 %其他: 1.2 %其他: 1.2 %三明: 0.4 %三明: 0.4 %上海: 1.9 %上海: 1.9 %东莞: 0.8 %东莞: 0.8 %保定: 0.8 %保定: 0.8 %北京: 5.0 %北京: 5.0 %南京: 2.3 %南京: 2.3 %南通: 0.4 %南通: 0.4 %台北: 1.2 %台北: 1.2 %台州: 1.2 %台州: 1.2 %哈尔滨: 1.2 %哈尔滨: 1.2 %大同: 0.8 %大同: 0.8 %天津: 2.3 %天津: 2.3 %宜春: 1.2 %宜春: 1.2 %宣城: 0.4 %宣城: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.8 %广州: 0.8 %张家口: 0.4 %张家口: 0.4 %徐州: 0.8 %徐州: 0.8 %成都: 5.4 %成都: 5.4 %新乡: 3.5 %新乡: 3.5 %无锡: 1.6 %无锡: 1.6 %昆明: 0.8 %昆明: 0.8 %晋城: 0.4 %晋城: 0.4 %杭州: 4.3 %杭州: 4.3 %桂林: 0.8 %桂林: 0.8 %榆林: 0.4 %榆林: 0.4 %武汉: 1.6 %武汉: 1.6 %深圳: 0.4 %深圳: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 2.3 %湖州: 2.3 %漯河: 1.2 %漯河: 1.2 %烟台: 0.4 %烟台: 0.4 %盐城: 0.4 %盐城: 0.4 %石家庄: 1.2 %石家庄: 1.2 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 9.7 %芒廷维尤: 9.7 %芝加哥: 2.3 %芝加哥: 2.3 %苏州: 1.6 %苏州: 1.6 %衢州: 0.8 %衢州: 0.8 %西宁: 3.9 %西宁: 3.9 %西安: 0.8 %西安: 0.8 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.2 %郑州: 1.2 %重庆: 1.6 %重庆: 1.6 %长沙: 0.4 %长沙: 0.4 %青岛: 0.4 %青岛: 0.4 %马鞍山: 0.4 %马鞍山: 0.4 %龙岩: 2.3 %龙岩: 2.3 %其他其他三明上海东莞保定北京南京南通台北台州哈尔滨大同天津宜春宣城常州常德广州张家口徐州成都新乡无锡昆明晋城杭州桂林榆林武汉深圳温州湖州漯河烟台盐城石家庄福州秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙青岛马鞍山龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads(5) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return