Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014
Citation: ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014

MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION

doi: 10.13205/j.hjgc.202311014
  • Received Date: 2022-07-05
    Available Online: 2023-12-25
  • All kinds of pollutants are inevitably produced in the production process of industrial and mining enterprises, among which the discharge of water pollutants has been always an important work of monitoring and prevention. The traditional monitoring methods adopted by current industrial and mining enterprises, such as video or online equipment monitoring, are often weak in adaptability to the randomness, contingency, and uncertainty of sudden water pollution accidents, and have problems such as low efficiency, high cost, and poor accuracy. Combined with the time/space continuum image information self-check method to analyze the water image online, a universal water pollution monitoring method was proposed, and a dynamic water pollution monitoring system based on intelligent vision was developed, to realize the efficient and accurate qualitative judgment of the pollution state. After the industrial and mining enterprises put the system into use, the operation and maintenance were simple. Compared with the traditional manual video pollution monitoring method, the pollution identification accuracy was increased by 13%, the effective recognition rate was more than 99%, the average pollution identification time was reduced by 3 to 5 hours, the rapid response of sudden water pollution accidents was realized, and the incidence of environmental protection accidents was greatly reduced. This method can effectively reduce the labor intensity of personnel, and save enterprise operating cost.
  • loading
  • [1]
    戴胜利, 段新.突发性水污染事件污染传导类型研究[J].环境保护科学, 2019, 42(2):107-112.
    [2]
    沈一凡.河流突发污染事故溯源关键技术研究[D].杭州:浙江大学, 2019.
    [3]
    王家彪, 河渠突发水污染溯源反问题研究[D].北京:清华大学, 2020.
    [4]
    王运鑫, 基于模糊贝叶斯网络的突发水污染事故风险评价研究[D].兰州:兰州交通大学, 2018.
    [5]
    冯强, 易境, 刘书敏, 等.城市黑臭水体污染现状、治理技术与对策[J].环境工程, 2020, 38(8):82-88.
    [6]
    陈卓然, 李思羽, 杨泽群.水质在线监测系统在二次供水设施管理中的应用[J].天津科技, 2021, 48(7):107-108.
    [7]
    兰翔.自动化监测技术在水质检测中的应用与研究[J].能源与环保, 2021, 43(7):269-274.
    [8]
    王先平.水污染控制工程中的水质参数在线监控[J].环境与开发, 1999, 14(2):38-40.
    [9]
    钱晓明, 谢康林.基于模糊PID控制的自动加矾系统[J].计算机工程, 2004, 30:445-447.
    [10]
    周小四, 杨杰, 朱一坦.用于监控智能报警系统的图像识别技术[J].上海交通大学学报, 2002, 36(4):498-501.
    [11]
    张便利, 常胜江, 李江卫, 等.基于彩色直方图分析的智能视频监控系统[J].物理学报, 2006(12):6399-6404.
    [12]
    刘鑫, 王忠, 秦明星.多机器人协同SLAM技术研究进展[J].计算机工程, 2022, 48(5):1-10.
    [13]
    陈学磊, 张品, 权令伟, 等.融合深度学习与成像模型的水下图像增强算法[J].计算机工程, 2022, 48(2):243-249.
    [14]
    HOU Q, CHENG M, HU X, et al.Deeply supervised salient object detection with short connections[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4):815-828.
    [15]
    SANZANA M R, MAUL T, WONG J Y, et al.Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning[J].Automation in Construction, 2022, 141:1-13.
    [16]
    HAHNEL P, MARECEK J, MONTEIL J, et al.Using deep learning to extend the range of air pollution monitoring and forecasting[J].Journal of Computational Physics, 2020, 408:1-13.
    [17]
    SINGHA S, PASUPULETI S, SINGHA S S, et al.Effectiveness of groundwater heavy metal pollution indices studies by deep-learning[J].Journal of Contaminant Hydrology, 2020, 235:1-18.
    [18]
    CHEN H Z, CHEN A, XU L L, et al.A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources[J].Agricultural Water Management, 2020, 240:1-8.
    [19]
    WAN H, XU R, ZHANG M, et al.A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods[J].Journal of Hydrology, 2022:1-34.
    [20]
    刘华玲, 马俊, 张国祥.基于深度学习的内容推荐算法研究综述[J].计算机工程, 2021, 47(7):1-12.
    [21]
    尹根.基于IEC61850标准的智能变电站通信接口的研究与设计[D].株洲:湖南工业大学, 2019.
    [22]
    张晓瑜.基于改进深度信念网络的时间序列预测方法及负荷预测应用研究[D].长沙:国防科技大学, 2018.
    [23]
    李正权, 林媛, 李梦雅, 等.基于判别式受限玻尔兹曼机的数字调制识别[J].通信学报, 2021, 42(2):81-91.
    [24]
    张春祥, 李海瑞, 高雪瑶.一种受限玻尔兹曼机的词义消歧方法[J].哈尔滨理工大学学报, 2019, 24(5):116-121.
    [25]
    陈亚宇, 李建龙, 孙骥晟, 等.基于机器视觉的填埋场防渗层破损识别方法[J].环境工程, 2021, 39(8):136-149.
    [26]
    翟嘉琪, 杨希祥, 程玉强, 等.机器学习在故障检测与诊断领域应用综述[J].计算机测量与控制, 2021, 29(3):1-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return