Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Conglin, HUANG Shoubin, WANG Zhuoyi, ZHANG Hongtao, NING Tao, NIU Zhenhua, CHEN Yun. A CASE ANALYSIS OF COMPREHENSIVE TREATMENT OF URBAN BLACK-ODOROUS WATER AND KEY POINTS DISCUSSION ON ENGINEERING DESIGN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 149-157. doi: 10.13205/j.hjgc.202301018
Citation: WU Mengli, ZHANG Xianghan, WANG Hongyu, XU Dongjian, CHEN Wufen. APPLICATION OF WATER QUANTITY AND QUALITY JOINT CONTROL MODEL IN QIANSHAN RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 160-164. doi: 10.13205/j.hjgc.202311025

APPLICATION OF WATER QUANTITY AND QUALITY JOINT CONTROL MODEL IN QIANSHAN RIVER BASIN

doi: 10.13205/j.hjgc.202311025
  • Received Date: 2023-08-02
    Available Online: 2023-12-25
  • Urban rivers are the carriers of the urban water ecological environment. Due to the increasing expansion of urban areas, the ecological impact of human activities on rivers is gradually increasing. A large number of urban rivers are facing problems, such as water pollution, ecological imbalance, reduced river flow capacity, and river sedimentation. This paper took the Qianshan River Basin in Zhuhai city as an example, and designed four sets of optimization scheduling plans to meet the need for basin optimization scheduling. By constructing a joint regulation model for water quantity and quality in the Qianshan River Basin, the scheduling effectiveness of the four optimization scheduling plans was analyzed. The results showed that the optimal scheduling effect is to build new water gates in the Qianshan River and Zhizhouchong River, which can isolate the Tanzhou water system from the Zhuhai water system. Tanzhou water system will become completely closed after the closure of the water gate and not be affected by salt tides. A unidirectional flow pattern will be formed in the Zhuhai water system, with inflow by Guangchang and Hongwan water gates, and drainage by Shijiaozui water gate on the Qianshan River.
  • [1]
    王磊, 陈石磊, 张恒飞, 等.基于水动力水质模型的梁滩河水环境监管系统设计与实现[J].水利水电快报, 2023, 44(5):128-133.
    [2]
    项飞, 郝瑞霞, 张倩楠.一二维耦合的水动力水质模型在闸汾河控河段的应用[J].太原理工大学学报, 2023, 54(2):332-340.
    [3]
    陈黎明, 俞欣, 金哲, 等.基于水动力水质模型的金川河流域水质长效达标分析[J].人民珠江, 2023, 44(7):71-79.
    [4]
    王爱杰, 许冬件, 钱志敏, 等.我国智慧水务发展现状及趋势[J].环境工程, 2023, 41(9):46-53.
    [5]
    袁行知, 许雪峰, 俞亮亮, 等.基于水动力水质模型的平原河网排污模拟分析[J].中国农村水利水电, 2022(12):39-46.
    [6]
    张家鸣, 刘继艳.基于一维水动力水质模型的纳污能力分段核定研究:以江门市江海区礼乐河为例[J].人民珠江, 2017, 38(7):85-88.
    [7]
    CHENG Y, LI Y, WANG Y, et al.Uncertainty and sensitivity analysis of spatial distributed roughness to a hydrodynamic water quality model:a case study on Lake Taihu, China[J].Environmental science and pollution research international, 2021, 29(9).
    [8]
    PYO J C, KWON Y S, MIN J H, et al.Effect of hyperspectral image-based initial conditions on improving short-term algal simulation of hydrodynamic and water quality models[J].Journal of Environmental Management, 2021, 294.
    [9]
    何黎艳.基于河道水动力水质模型的福州南台岛补水优化调度研究[J].中国高新科技, 2021(12):135-136.
    [10]
    李松萍.非规则断面明渠与伏流一维水动力水质模拟[D].武汉:华中科技大学, 2021.
    [11]
    吴凡杰, 吴钢锋, 董平等.基于三维水动力水质数值模型的象山港排污策略研究[J].海洋环境科学, 2021, 40(1):24-33.
    [12]
    MAN X, LEI C, CAREY C C, et al.Relative Performance of 1-D Versus 3-D Hydrodynamic, Water-Quality Models for Predicting Water Temperature and Oxygen in a Shallow, Eutrophic, Managed Reservoir[J].Water, 2021, 13(1).
    [13]
    伊学农, 吴跃颖.水文-水动力-水质模型耦合应用现状综述[J].中国水运(下半月), 2020, 20(4):41-43.
    [14]
    邵世保, 吴雁, 张德辉, 等.基于EFDC水动力-水质模型的建立:以慈湖河为例[J].环境与发展, 2020, 32(2):103-105

    , 109.
    [15]
    杜文娟, 陈黎明, 陈炼钢, 等.水动力水质模型在温黄平原河网入河污染负荷削减中的应用[J].水利水电技术, 2018, 49(6):109-117.
    [16]
    Artificial Neural Networks.Study data from Vanderbilt University provide new insights into artificial neural networks hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model[J].Ecology Environment, Conservation, 2018:716-726.
  • Relative Articles

    [1]LI Sida, WANG Xinyan, ZHANG Fangfei, SHAO Dongdong, CUI Baoshan, CAO Bo, ZHANG Yong. UNMANNED AERIAL VEHICLE (UAV) REMOTE SENSING TECHNOLOGY IN WETLAND HYDRODYNAMIC RESEARCH: PROGRESS, PROSPECT, AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 93-104. doi: 10.13205/j.hjgc.202301012
    [5]Qin Lanlan Wang Youle, . CASE STUDY ON THE INDICATOR SYSTEM OF PLANNED ENVIRONMENTAL IMPACT ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 143-146. doi: 10.13205/j.hjgc.201502032
    [6]Li Xiangyu, Sun Jian, Qu Qizhong. EVALUATION OF ENVIRONMENTAL FACTORS ON GREEN CONSTRUCTION FOR CONSTRUCTION PROJECTS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 118-121. doi: 10.13205/j.hjgc.201503024
    [7]Cai Ming Luo Peng Lv Zishen, . MONITORING AND ANALYSIS OF ROAD TRAFFIC NOISE IN GUANGZHOU BETWEEN 2011 AND 2013[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 146-149. doi: 10.13205/j.hjgc.201501034
  • Cited by

    Periodical cited type(10)

    1. 熊瑛,曹海深,楼春华,曹天昊. 城市水环境治理技术及其发展趋势. 北京水务. 2024(01): 55-60 .
    2. 张东. 基于黑臭水体治理的城市雨污分流改造技术研究. 水利技术监督. 2024(03): 215-217+226 .
    3. 刘学虎. 农村水环境污染治理对策分析. 皮革制作与环保科技. 2024(05): 119-121 .
    4. 金丽丽. 流域水环境污染生态修复关键工艺研究. 皮革制作与环保科技. 2024(07): 153-155 .
    5. 闫林霞,韩小波,范翊. 城市河流生态构建与水环境安全保障集成技术研究. 皮革制作与环保科技. 2024(17): 58-60 .
    6. 邓立昌. 城区黑臭水体污染特征研究. 环境科学与管理. 2024(10): 71-75 .
    7. 陈正侠,张潇月,于金旗,张鹤清,佟庆远,徐常青,贾海峰. 面向水质目标管理的城镇河湖排口雨水径流控制方法与技术. 给水排水. 2024(12): 15-20+27 .
    8. 吴冰,尤春伟,周代迎. RPIR+磁混凝沉淀在深圳市白花河沿岸黑臭水体治理中的应用. 市政技术. 2023(05): 205-211 .
    9. 张帅. 基于城市水环境综合治理思路研究. 清洗世界. 2023(07): 132-134 .
    10. 于飞. 黑臭水体生态修复实施效果试验研究. 水利技术监督. 2023(11): 38-40 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.1 %FULLTEXT: 14.1 %META: 85.9 %META: 85.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.3 %其他: 25.3 %China: 1.0 %China: 1.0 %丽水: 1.0 %丽水: 1.0 %北京: 8.1 %北京: 8.1 %台州: 2.0 %台州: 2.0 %天津: 1.0 %天津: 1.0 %杭州: 4.0 %杭州: 4.0 %湖州: 3.0 %湖州: 3.0 %漯河: 1.0 %漯河: 1.0 %芒廷维尤: 32.3 %芒廷维尤: 32.3 %芝加哥: 3.0 %芝加哥: 3.0 %苏州: 1.0 %苏州: 1.0 %莫斯科: 3.0 %莫斯科: 3.0 %西宁: 10.1 %西宁: 10.1 %遵义: 1.0 %遵义: 1.0 %郑州: 1.0 %郑州: 1.0 %重庆: 1.0 %重庆: 1.0 %阳泉: 1.0 %阳泉: 1.0 %其他China丽水北京台州天津杭州湖州漯河芒廷维尤芝加哥苏州莫斯科西宁遵义郑州重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads(6) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return