Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Dong, QI Junwen, XU Zunzhu, ZHANG Jiwen, JIN Xiaoxian, LI Jiansheng. ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 66-72,81. doi: 10.13205/j.hjgc.202302010
Citation: LIU Shentan, WANG Zuo. AN ECO-TYPE MICROBIAL FUEL CELL FOR SIMULTANEOUS ELECTRICITY GENERATION AND NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 116-122,149. doi: 10.13205/j.hjgc.202312014

AN ECO-TYPE MICROBIAL FUEL CELL FOR SIMULTANEOUS ELECTRICITY GENERATION AND NITROGEN REMOVAL

doi: 10.13205/j.hjgc.202312014
  • Received Date: 2022-05-26
    Available Online: 2024-03-08
  • Ecotype-microbial fuel cell (E-MFC) is a novel wastewater treatment technology that combines microbial fuel cell (MFC) with aquatic animals and plants. To study the symbiotic synergy among "microorganisms, aquatic plants and benthic animals" in E-MFC, a series of reactors consisting of sediment MFC (S-MFC), wetland plant MFC (WP-MFC, planting aquatic plants) and ecotype-MFC (E-MFC, introducing aquatic plants and benthic animals) were set up in this experiment, to test their electricity production capacity and nitrogen removal effects. The effects of hydraulic retention time (HRT) and cathode aeration on nitrogen removal and electricity production of the E-MFC were investigated, and the main nitrogen removal mechanisms were discussed. The results showed that the nitrogen removal and electricity production performance of the E-MFC were better than the other two reactors. When treating the same amount of organic wastewater, the maximum power density of E-MFC was 129.4% and 47.2% higher than that of S-MFC and WP-MFC, ammonia nitrogen removal efficiency was 37.6% and 11.2% higher, respectively, and nitrate nitrogen removal efficiency reached 96% above. Further research showed that when HRT was 72 h and water inflow was 0.50 L/d, the E-MFC obtained the highest output voltage of 463 mV, and the corresponding output power density was 27.31 mW/m2. When the cathodic aeration rate was 60 L/h, the maximum output power reached 38.12 mW/m2. In the E-MFC, the disturbance and other activities of aquatic animals enhanced oxygen mass transfer, organic matter decomposition, and nutrient cycling, providing sufficient nutrients for plant growth. In addition, root oxygen secretion also maintained good environmental conditions for the growth and metabolism of rhizosphere microorganisms. Microorganisms, aquatic plants, and benthic animals in the E-MFC formed a relationship of mutual promotion and synergy, thus strengthening the removal of nitrogen from wastewater. As a new ecological restoration technology, E-MFC can recover electric energy and have a good development prospect in the field of wastewater treatment.
  • [1]
    石玉翠, 罗昕怡, 唐刚, 等. 人工湿地-微生物燃料电池耦合系统的研究进展及展望[J]. 环境工程, 2021, 39(8): 25-33.
    [2]
    WU Q, JIAO S P, MA M X, et al. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation[J]. Environmental Science and Pollution Research International, 2020, 27(7): 6749-6764.
    [3]
    陈婧, 秦歌, 余仁栋,等. 人工湿地-微生物燃料电池性能优化研究进展[J]. 水处理技术, 2022, 48(7): 25-31.
    [4]
    鹿钦礼, 李亮, 刘金亮, 等. 微生物燃料电池的应用研究进展[J]. 环境工程, 2019, 37(8): 95-100.
    [5]
    王义安, 王超, 林华, 等. 人工湿地与微生物燃料电池耦合系统的研究进展[J]. 现代化工, 2021, 41(3): 21-25.
    [6]
    陈传杰, 张铭川, 陈熙, 等. 核桃壳生物炭电极在微生物燃料电池中的产电性能及其对污染物的去除性能[J]. 环境工程学报, 2022, 16(10): 3281-3290.
    [7]
    KOFFI N J, OKABE S. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell[J]. Chemosphere, 2021, 274: 129715.
    [8]
    夏函青, 伍永钢, 江文亭, 等. 人工湿地-微生物燃料电池系统的发展及展望[J]. 化工进展, 2019, 38(12): 5548-5556.
    [9]
    谢静怡, 卢学强, 李海笑. 人工湿地型微生物燃料电池研究进展述评[J]. 安全与环境学报, 2020, 20(1): 206-215.
    [10]
    LIU S T, FENG X J, XUE H P, et al. Bioenergy generation and nitrogen removal in a novel ecological-microbial fuel cell[J]. Chemosphere, 2021, 278: 130450.
    [11]
    CARMALIN A S, SREEJA S. Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator[J]. Sustainable Energy Technologies and Assessments, 2017, 21: 59-66.
    [12]
    ASHEESH K Y, PURNANJALI D, AYUSMAN M, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J]. Ecological Engineering, 2012, 47: 126-131.
    [13]
    ABDULLAH A M, TAHEREH J, MAHAD S B, et al. Energy recovery and carbon/nitrogen removal from sewage and contaminated groundwater in a coupled hydrolytic-acidogenic sequencing batch reactor and denitrifying biocathode microbial fuel cell[J]. Environmental Research, 2020, 183: 10927-10938.
    [14]
    MOHAMED A, SAINAB F, SAMA A, et al. Continuous and scalable applications of microbial fuel cells: a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(3): 543-578.
    [15]
    黄珊, 陆勇泽, 朱光灿, 等. 耦合生物阴极SND的MLMB-MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
    [16]
    王晋, 沈钱勇, 杨彦. 植物微生物燃料电池修复Cr(Ⅵ)污染湿地土壤及机理研究[J]. 环境科学学报, 2019, 39(2): 518-526.
    [17]
    李耀睿, 花修艺, 毛丹, 等. 颤蚓及其生物扰动对表层沉积物微环境pH和溶解氧的影响[J]. 吉林大学学报(理学版), 2015, 53(6): 1334-1340.
    [18]
    TOU, AZRI, SADI, et al. Chlorophytum microbial fuel cell characterization[J]. International Journal of Green Energy, 2019, 16(12): 947-959.
    [19]
    汪祝方, 赵志淼, 程梦雨, 等. 植物群落对湿地净化生活污水的影响[J]. 环境工程学报, 2021, 15(1): 126-135.
    [20]
    许丹, 黄铭意, 韩胡威, 等. 三种挺水植物对CW-MFC耦合系统脱氮及产电性能的影响[J]. 水生生物学报, 2023, 47(7): 1148-1156.
    [21]
    GARAI P, BANERJEE P, SHARMA P, et al. Nitrate-induced toxicity and potential attenuation of behavioural and stress biomarkers in Tubifex[J]. International Journal of Environmental Research, 2022, 16(4): 22-43.
    [22]
    XU F, CAO F Q, KONG Q, et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell[J]. Chemical Engineering Journal, 2018, 339: 479-486.
    [23]
    SAZ Ç, TURE C, TURKER O C, et al. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J]. Environmental Science and Pollution Research, 2018, 25(9): 8777-8792.
    [24]
    WANG J F, SONG X S, WANG Y H, et al. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J]. Science of the Total Environment, 2017, 607/608: 53-62.
    [25]
    OON Y L, ONG S A, HO L N, et al. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery[J]. Bioresource Technology, 2017, 224: 265-275.
    [26]
    HABIBUL N, HU Y, WANG Y K, et al. Bioelectrochemical chromium(Ⅵ) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50(7): 3882-3890.
    [27]
    OON Y L, ONG S A, HO L N, et al. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation[J]. Bioresource Technology, 2015, 186: 270-275.
    [28]
    WANG J, HOU J, XIA L, et al. The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands[J]. Biochemical Engineering Journal, 2020, 153(C): 107400-107409.
    [29]
    RACHNARIN N, ROSHAN R. Plant microbial fuel cells: a promising biosystems engineering[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 81-89.
    [30]
    侯登峰, 张皓驰, 李先宁. 微生物燃料电池对废水脱氮性能的影响因素综述[J]. 环境污染与防治, 2022, 44(8): 1091-1096

    , 1120.
    [31]
    HUANG X F, YE G Y, YI N K, et al. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands[J]. Ecological Engineering, 2019, 135: 45-53.
    [32]
    张克, 田双超, 窦雪雁, 等. 厌氧/好氧生物接触氧化工艺耦合微生物燃料电池技术处理农村生活污水[J]. 环境工程, 2022, 40(3): 139-146.
  • Relative Articles

    [1]LI Haicheng, CHENG Cheng, CHEN Zhenglin, YANG Lixia, LUO Shenglian. SULFIDE ION DOPING PROMOTES EFFICIENT PHOTOCATALYTIC DEGRADATION OF TOLUENE BY WO3 NANOWIRES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 201-210. doi: 10.13205/j.hjgc.202409019
    [2]FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012
    [3]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [4]QIU Fuguo, XIA Xin, WANG Xiaoqian, LÜ Huadong. Hg(Ⅱ) ADSORPTION PERFORMANCE BY WATER TREATMENT RESIDUAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 34-41. doi: 10.13205/j.hjgc.202303005
    [5]NING Lianchao, HAN Yaxin, LI Qunxing, LIU Zihan, ZHANG Ming. PREPARATION OF ADSORPTION MATERIAL FOR OIL-WATER SEPARATION FROM MODIFIED ABANDONED MASKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 172-178. doi: 10.13205/j.hjgc.202303023
    [6]WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014
    [7]YANG De-yu, HAO Qing-lan, ZHAO Chen-chen, YAN Ning-na, DOU Bao-juan. CATALYTIC DEGRADATION PERFORMANCE OF TOLUENE OVER CuxMn1-xCe0.75Zr0.25Oy[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 96-100. doi: 10.13205/j.hjgc.202101014
    [8]WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014
    [9]ZHANG Kai, YANG Shi-chao, LUO Min, WU Yan-heng, YU Su-ying. PREPARATION OF NANO-SHEET ZSM-5 ZEOLITE AND ITS ADSORPTION PROPERTIES FOR INDOOR ENVIRONMENT VOCs[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 60-64,74. doi: 10.13205/j.hjgc.202001009
    [14]Zhang Qingle Dong Jian Zhang Liqing Wang Jixiang Li Zejiao Li Rui, . ADSORPTION CHARACTERISTICS OF HEXAVALENT CHROMIUM ON POPLAR LEAF MODIFIED BY OXALATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 64-69. doi: 10.13205/j.hjgc.201505014
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 82.6 %META: 82.6 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.7 %其他: 16.7 %上海: 1.0 %上海: 1.0 %东莞: 1.0 %东莞: 1.0 %临汾: 0.3 %临汾: 0.3 %佛山: 1.0 %佛山: 1.0 %保定: 0.3 %保定: 0.3 %北京: 8.2 %北京: 8.2 %十堰: 0.3 %十堰: 0.3 %南京: 1.6 %南京: 1.6 %南昌: 0.7 %南昌: 0.7 %南通: 0.7 %南通: 0.7 %厦门: 0.7 %厦门: 0.7 %台州: 0.3 %台州: 0.3 %合肥: 1.0 %合肥: 1.0 %喀什: 0.3 %喀什: 0.3 %大同: 0.3 %大同: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %安康: 0.3 %安康: 0.3 %安顺: 0.3 %安顺: 0.3 %宜春: 0.3 %宜春: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 1.3 %常德: 1.3 %张家口: 0.3 %张家口: 0.3 %成都: 1.6 %成都: 1.6 %扬州: 1.6 %扬州: 1.6 %昆明: 1.6 %昆明: 1.6 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.3 %杭州: 2.3 %桂林: 1.0 %桂林: 1.0 %武汉: 2.0 %武汉: 2.0 %泽西: 0.3 %泽西: 0.3 %淄博: 0.3 %淄博: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.7 %湖州: 0.7 %漯河: 4.3 %漯河: 4.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.0 %福州: 1.0 %芒廷维尤: 17.0 %芒廷维尤: 17.0 %芝加哥: 3.0 %芝加哥: 3.0 %葫芦岛: 0.3 %葫芦岛: 0.3 %衢州: 0.7 %衢州: 0.7 %西宁: 12.8 %西宁: 12.8 %西安: 0.3 %西安: 0.3 %贵阳: 1.3 %贵阳: 1.3 %运城: 1.6 %运城: 1.6 %遵义: 0.3 %遵义: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 0.3 %重庆: 0.3 %长沙: 2.0 %长沙: 2.0 %长治: 0.3 %长治: 0.3 %其他上海东莞临汾佛山保定北京十堰南京南昌南通厦门台州合肥喀什大同天津太原安康安顺宜春宣城常德张家口成都扬州昆明晋城朝阳杭州桂林武汉泽西淄博深圳温州湖州漯河焦作石家庄福州芒廷维尤芝加哥葫芦岛衢州西宁西安贵阳运城遵义郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (159) PDF downloads(3) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return