Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
GUO Yajun, WANG Hualan, LI Mingxuan, LI Ruohan. ANALYSIS OF AIR POLLUTION CHARACTERISTICS IN EXPRESSWAY AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 166-171. doi: 10.13205/j.hjgc.202312020
Citation: GUO Yajun, WANG Hualan, LI Mingxuan, LI Ruohan. ANALYSIS OF AIR POLLUTION CHARACTERISTICS IN EXPRESSWAY AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 166-171. doi: 10.13205/j.hjgc.202312020

ANALYSIS OF AIR POLLUTION CHARACTERISTICS IN EXPRESSWAY AREAS

doi: 10.13205/j.hjgc.202312020
  • Received Date: 2022-09-13
    Available Online: 2024-03-08
  • In order to understand the spatial and temporal distribution characteristics of air pollutants in highway areas, the G30 Lian-huo Highway in Shandan County, Zhangye City was taken as the research object. Based on field monitoring data, multi-scale geographically weighted regression (MGWR) model was used to define the boundary of air pollutants in highway areas. The temporal and spatial characteristics of the main pollutants (PM2.5, PM10, CO and SO2) and their correlation with traffic and meteorological elements were analyzed. The results showed that: The influence of constant term and boundary distance on Isum (a composite index of ambient air quality) was significantly negative. At the monitoring point 300 meters away from the expressway boundary, the median of the constant term was -0.316, and the mean boundary distance was -1.022. Meanwhile, the regression coefficients of a constant term and boundary distance tended to be stable after 300 meters away from the expressway boundary. Therefore, the boundary of air pollutants in the highway domain was defined as the area within a distance of 300 meters from the highway boundary. In correlation analysis, while CO and SO2 showed significant correlation with traffic volume and meteorological factors, PM10 and PM2.5 showed no significant correlation with traffic volume and meteorological factors. The wind direction had a strong influence on the spatial distribution of PM2.5, PM10 and SO2, but didn't have a positive effect on CO spatial distribution.
  • loading
  • [1]
    韩同福.高速公路路域生态规划及其环境影响评价研究[D].天津:天津大学,2012.
    [2]
    王德智,邱彭华,方源敏.丽香铁路建设对沿线景观格局影响的尺度效应及其生态风险[J].应用生态学报,2015,26(8):2493-2503.
    [3]
    梁凯旋,章桂芳,李红中,等.基于植被指数的公路路域界限[J].中山大学学报(自然科学版),2020,59(2):101-109.
    [4]
    陈建业,陆旭东,王倜.长白山区公路对路域植物物种组成及多样性的影响[J].生态环境学报,2010,19(2):373-378.
    [5]
    郭云开,苟叶培.高速公路对路域植被影响的时空格局变化遥感监测分析[J].地球信息科学学报,2016,18(11):1537-1543.
    [6]
    中华人民共和国交通部. 公路建设项目环境影响评价规范:JTG B03—2006[S]. 北京:人民交通出版社,2006.
    [7]
    毛文碧,段昌群.公路路域生态学[M].北京:人民交通出版社,2009.
    [8]
    魏文静,谢炳庚,周楷淳,等.2013—2018年山东省大气PM2.5和PM10污染时空变化及其影响因素[J].环境工程,2020,38(12):103-111.
    [9]
    张亚茹,陈永金,郭庆春,等. 济南市大气污染物时空变化及预测分析[J].环境工程,2020,38(2):114-121.
    [10]
    张晴,赵丽娅,郭志威,等.2017—2020年武汉市大气污染物时空分布特征研究[J].环境工程,2023,41(2):82-90.
    [11]
    陈敏,李振亮,段林丰,等.成渝地区工业大气污染物排放的时空演化格局及关键驱动因素[J].环境科学研究,2022,35(4):1072-1081.
    [12]
    李欣悦,张凯山.成都市气态污染物NO2、SO2与大气颗粒物相关性分析[J].环境工程,2019,37(6):111-116.
    [13]
    侯素霞,张鉴达,李静.上海市大气污染物时空分布及其相关性因子分析[J].生态环境学报,2021,30(6):1220-1228.
    [14]
    郎建垒,程水源,韩力慧,等.京津冀地区机动车大气污染物排放特征[J].北京工业大学学报,2012,38(11):1716-1723.
    [15]
    宋晓伟,郝永佩,朱晓东.长三角城市群机动车污染物排放清单建立及特征研究[J].环境科学学报,2020,40(1):90-101.
    [16]
    李云燕,葛畅.我国三大区域PM2.5源解析研究进展[J].现代化工,2017,37(4):1-5

    ,7.
    [17]
    SONG C B, MA C, ZHANG Y J, et al. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China[J]. Science of the Total Environment, 2018, 637/638(OCT.1):431-442.
    [18]
    陈艳艳, 秦伟玲, 李晓祎,等.货运场站机动车污染物排放监测及污染特征研究[J]. 重庆交通大学学报(自然科学版),2018,37(9): 60-65.
    [19]
    吕改艳,张卫东,李振亮,等.重庆市主城区基于动态交通流的机动车污染物排放特征[J].环境污染与防治,2021,43(11):1364-1370.
    [20]
    何吉成.基于车流量的京哈高速公路车辆大气污染物排放[J].生态科学,2015,34(1):154-157.
    [21]
    王清洲,栾海敏,范鑫,等.高速公路主线收费站节能减排测算模型与实例分析[J].环境工程,2019,37(6):184-189

    ,164.
    [22]
    程大千,邹庆,张甦,等.机动车污染物排放及扩散的时空分布特征研究:以江苏省高速公路网为例[J].公路交通科技,2020,37(11):139-149.
    [23]
    黄颙昊,杨新苗,岳锦涛.基于多尺度地理加权回归模型的城市道路骑行流量分析[J].清华大学学报(自然科学版),2022,62(7):1132-1141.
    [24]
    FOTHERINGHAM A S, YANG W, KANG W. Multiscale geographically weighted regression(MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6):1247-1265.
    [25]
    于瀚辰,沈体雁,孙童.中国ICT设备制造业的动态空间分异[J].地域研究与开发,2019,38(1):1-5.
    [26]
    沈体雁,于瀚辰,周麟,等.北京市二手住宅价格影响机制:基于多尺度地理加权回归模型(MGWR)的研究[J].经济地理,2020,40(3):75-83.
    [27]
    高硕晗,陶双成,熊新竹,等.北方地区典型高速公路近路区域大气污染特征研究[J].生态环境学报,2019,28(6):1168-1174.
    [28]
    何吉成,徐洪磊,程金香.松通高速公路运营期大气环境影响评估[J].安全与环境工程,2013,20(6):111-115.
    [29]
    吴一帆,张子豪,王帅,等.大连市大气污染特征、影响因素及来源分析[J].环境工程,2018,36(6):104-109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (146) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return