Citation: | YUAN Yuxuan, SHEN Kai, CHEN Chao, WU Peng, LI Bo, YAO Quansheng, ZHANG Yaping. SIMULATION AND OPTIMIZATION OF FLUE GAS DESULFURIZATION WITH COMPLEXED IRON BASED ON ASPEN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 172-181. doi: 10.13205/j.hjgc.202312021 |
[1] |
YANG H Y, TATARCHUK B. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications[J]. AIChE Journal, 2010, 56(11): 2898-2904.
|
[2] |
李飒,林千果,梁希,等.钢铁高炉煤气二氧化碳捕集技术经济性分析[J].环境工程, 2021, 39(9): 117-122
,175.
|
[3] |
LI P F, WANG G C, DONG Y, et al. A review on desulfurization technologies of blast furnace gases[J]. Current Pollution Reports, 2022, 8(2): 189-200.
|
[4] |
田昀, 刘庆岭, 纪娜,等. 挥发性污染物二硫化碳处理技术[J]. 环境工程, 2018, 36(7): 87-92.
|
[5] |
GUPTA A K, IBRAHIM S, Al SHOAIBI A. Advances in sulfur chemistry for treatment of acid gases[J]. Progress in Energy and Combustion Science, 2016, 54: 65-92.
|
[6] |
倪停亭,谢海燕,韩晋科,等. 棉浆粕化纤企业H2S和CS2排放特征及影响分析[J]. 环境工程, 2019, 37(2): 114-118.
|
[7] |
周雪鹿. 钢铁企业剩余煤气高效再利用研究[D]. 西安:西安建筑科技大学, 2017.
|
[8] |
邓彬, 鄢晓忠, 彭博,等. 高炉煤气管道腐蚀原因分析及防腐措施[J]. 冶金动力, 2018, 223(9): 13-16
,21.
|
[9] |
王泽鑫, 上官炬, 刘艳霞,等. 转化吸收型氧化锌基脱硫剂脱除H2S和COS性能[J]. 精细化工, 2018, 35(12): 2024-2030
,2038.
|
[10] |
LI L, KING D L. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catalysis Today, 2006, 116(4): 537-541.
|
[11] |
吴建华,邱信欣,刘锋,等.生物滴滤塔处理硫化氢废气[J].化工环保, 2019, 39(3): 278-282.
|
[12] |
LI C X, FVRST W. Representation of CO2 and H2S solubility in aqueous MDEA solutions using an electrolyte equation of state[J]. Chemical Engineering Science, 2000, 55(15): 2975-2988.
|
[13] |
唐乐. 鲁奇低温甲醇洗工艺净化气硫化氢超标的原因分析及改造[J]. 煤化工, 2020, 48(3): 61-64.
|
[14] |
ZHAI L F, HU L L, SUN M. Understanding the catalyst regeneration kinetics in the chelated iron dehydrosulfurization process: a model in terms of Fe(Ⅱ) speciation[J]. Industrial & Engineering Chemistry Research, 2015, 54(25): 6430-6437.
|
[15] |
胡徐彦. 超重力旋转填料床中络合铁脱硫工艺处理海上油田含硫伴生天然气[J]. 化工环保, 2014, 34(3): 254-256.
|
[16] |
BURYAN P. Losses of an iron complex and ethylenediaminetetraacetic acid during gas desulfurization[J]. Chemical Papers, 2017, 71: 673-677.
|
[17] |
肖荣鸽, 庄琦, 王栋,等. 基于软件模拟的天然气醇胺法脱硫脱碳工艺研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(4): 21-26.
|
[18] |
SUN M, SONG W, ZHZI L F, et al. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process[J]. Journal of Hazardous Materials, 2013, 263: 643-649.
|
[19] |
DEMMINK J F, BEENACKER A. Oxidation of ferrous nitrilotriacetic acid with oxygen: a model for oxygen mass transfer parallel to reaction kinetics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 1989-2005.
|
[20] |
DESHMUKH G M, SHETE A, PAWAR D M. Oxidative absorption of hydrogen sulfide using an iron-chelate based process: chelate degradation[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(3): 432-436.
|
[21] |
FRARE L M, VIEIRA M G A, SILVA M G C, et al. Hydrogen sulfide removal from biogas using Fe/EDTA solution: gas/liquid contacting and sulfur formation[J]. Environmental Progress & Sustainable Energy, 2010, 29(1): 34-41.
|
[22] |
ZHANG J, XIAO K, LIU Z W, et al. Large-scale membrane bioreactors for industrial wastewater treatment in China: technical and economic features, driving forces, and perspectives[J]. Engineering, 2021, 7(6): 868-880.
|
[23] |
王亚军. 络合铁吸收硫化氢的反应动力学研究[D]. 北京:中国石油大学, 2018.
|
[24] |
向言, 俞英, 黄海燕. 络合铁法湿式脱硫再生反应动力学[J]. 石油与天然气化工, 2019, 48(3): 1-7.
|
[25] |
齐丽. 基础物性估算方法评价研究[D]. 青岛:青岛科技大学, 2018.
|
[26] |
周超. 化工物性估算系统研究与开发[D]. 青岛:青岛科技大学, 2022.
|
[27] |
陈煜泉. 络合铁湿式氧化硫化氢的工艺及动力学[D]. 杭州: 浙江工业大学, 2017.
|
[28] |
NOUR EL-DIEN F A. Preparation and characterization of iron-DI-and poly-carboxylatepyrocatechol and pyrogallol mixed ligands chelates[J]. Spectroscopy Letters, 1999, 32(3): 407-419.
|
[29] |
CRAMER S D. The solubility of oxygen in brines from 0 to 300 C[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(2): 300-305.
|