Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
YUAN Yuxuan, SHEN Kai, CHEN Chao, WU Peng, LI Bo, YAO Quansheng, ZHANG Yaping. SIMULATION AND OPTIMIZATION OF FLUE GAS DESULFURIZATION WITH COMPLEXED IRON BASED ON ASPEN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 172-181. doi: 10.13205/j.hjgc.202312021
Citation: YUAN Yuxuan, SHEN Kai, CHEN Chao, WU Peng, LI Bo, YAO Quansheng, ZHANG Yaping. SIMULATION AND OPTIMIZATION OF FLUE GAS DESULFURIZATION WITH COMPLEXED IRON BASED ON ASPEN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 172-181. doi: 10.13205/j.hjgc.202312021

SIMULATION AND OPTIMIZATION OF FLUE GAS DESULFURIZATION WITH COMPLEXED IRON BASED ON ASPEN

doi: 10.13205/j.hjgc.202312021
  • Received Date: 2023-02-19
    Available Online: 2024-03-08
  • In order to meet the treatment requirement of high concentration H2S after catalytic hydrolysis of blast furnace gas, the ELECNRTL physical property method of ASPEN and JOBACK group contribution method were used to estimate the physical property parameters of EDTA complexed iron with ethylenediamine tetraacetic acid as the ligand raw material. The simulation model of the complete wet desulphurization process with EDTA complexed iron and oxidation regeneration was built. And two reactors, the packed absorption tower, and the aeration regeneration tank, were set as the core unit. Through the single factor analysis, it was found that under the flue gas flow rate of 1000 m3/h, when pH=8, the reaction temperature of the packed column and the regeneration tank was 25 ℃, the reaction pressure was 0.1 MPa, the liquid-gas ratio was 5:1, the concentration of iron complexation was 0.05 mol/L, the residence time was 40 s and the molar ratio of O2-ferrous complexation was 4:1, the model could be optimized with the balance of cost and efficiency. Under these parameters, the H2S absorption rate and the complex ferrous regeneration rate achieved 99.5% and 97.6%, respectively. On this basis, the orthogonal analysis was used to explore the influence of each factor and the model was applied to the design of the actual demonstration project. The project operated well and its result was like the expected values of the model. It indicated that the model has good application potential and can be used to guide engineering design and optimization.
  • loading
  • [1]
    YANG H Y, TATARCHUK B. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications[J]. AIChE Journal, 2010, 56(11): 2898-2904.
    [2]
    李飒,林千果,梁希,等.钢铁高炉煤气二氧化碳捕集技术经济性分析[J].环境工程, 2021, 39(9): 117-122

    ,175.
    [3]
    LI P F, WANG G C, DONG Y, et al. A review on desulfurization technologies of blast furnace gases[J]. Current Pollution Reports, 2022, 8(2): 189-200.
    [4]
    田昀, 刘庆岭, 纪娜,等. 挥发性污染物二硫化碳处理技术[J]. 环境工程, 2018, 36(7): 87-92.
    [5]
    GUPTA A K, IBRAHIM S, Al SHOAIBI A. Advances in sulfur chemistry for treatment of acid gases[J]. Progress in Energy and Combustion Science, 2016, 54: 65-92.
    [6]
    倪停亭,谢海燕,韩晋科,等. 棉浆粕化纤企业H2S和CS2排放特征及影响分析[J]. 环境工程, 2019, 37(2): 114-118.
    [7]
    周雪鹿. 钢铁企业剩余煤气高效再利用研究[D]. 西安:西安建筑科技大学, 2017.
    [8]
    邓彬, 鄢晓忠, 彭博,等. 高炉煤气管道腐蚀原因分析及防腐措施[J]. 冶金动力, 2018, 223(9): 13-16

    ,21.
    [9]
    王泽鑫, 上官炬, 刘艳霞,等. 转化吸收型氧化锌基脱硫剂脱除H2S和COS性能[J]. 精细化工, 2018, 35(12): 2024-2030

    ,2038.
    [10]
    LI L, KING D L. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catalysis Today, 2006, 116(4): 537-541.
    [11]
    吴建华,邱信欣,刘锋,等.生物滴滤塔处理硫化氢废气[J].化工环保, 2019, 39(3): 278-282.
    [12]
    LI C X, FVRST W. Representation of CO2 and H2S solubility in aqueous MDEA solutions using an electrolyte equation of state[J]. Chemical Engineering Science, 2000, 55(15): 2975-2988.
    [13]
    唐乐. 鲁奇低温甲醇洗工艺净化气硫化氢超标的原因分析及改造[J]. 煤化工, 2020, 48(3): 61-64.
    [14]
    ZHAI L F, HU L L, SUN M. Understanding the catalyst regeneration kinetics in the chelated iron dehydrosulfurization process: a model in terms of Fe(Ⅱ) speciation[J]. Industrial & Engineering Chemistry Research, 2015, 54(25): 6430-6437.
    [15]
    胡徐彦. 超重力旋转填料床中络合铁脱硫工艺处理海上油田含硫伴生天然气[J]. 化工环保, 2014, 34(3): 254-256.
    [16]
    BURYAN P. Losses of an iron complex and ethylenediaminetetraacetic acid during gas desulfurization[J]. Chemical Papers, 2017, 71: 673-677.
    [17]
    肖荣鸽, 庄琦, 王栋,等. 基于软件模拟的天然气醇胺法脱硫脱碳工艺研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(4): 21-26.
    [18]
    SUN M, SONG W, ZHZI L F, et al. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process[J]. Journal of Hazardous Materials, 2013, 263: 643-649.
    [19]
    DEMMINK J F, BEENACKER A. Oxidation of ferrous nitrilotriacetic acid with oxygen: a model for oxygen mass transfer parallel to reaction kinetics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 1989-2005.
    [20]
    DESHMUKH G M, SHETE A, PAWAR D M. Oxidative absorption of hydrogen sulfide using an iron-chelate based process: chelate degradation[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(3): 432-436.
    [21]
    FRARE L M, VIEIRA M G A, SILVA M G C, et al. Hydrogen sulfide removal from biogas using Fe/EDTA solution: gas/liquid contacting and sulfur formation[J]. Environmental Progress & Sustainable Energy, 2010, 29(1): 34-41.
    [22]
    ZHANG J, XIAO K, LIU Z W, et al. Large-scale membrane bioreactors for industrial wastewater treatment in China: technical and economic features, driving forces, and perspectives[J]. Engineering, 2021, 7(6): 868-880.
    [23]
    王亚军. 络合铁吸收硫化氢的反应动力学研究[D]. 北京:中国石油大学, 2018.
    [24]
    向言, 俞英, 黄海燕. 络合铁法湿式脱硫再生反应动力学[J]. 石油与天然气化工, 2019, 48(3): 1-7.
    [25]
    齐丽. 基础物性估算方法评价研究[D]. 青岛:青岛科技大学, 2018.
    [26]
    周超. 化工物性估算系统研究与开发[D]. 青岛:青岛科技大学, 2022.
    [27]
    陈煜泉. 络合铁湿式氧化硫化氢的工艺及动力学[D]. 杭州: 浙江工业大学, 2017.
    [28]
    NOUR EL-DIEN F A. Preparation and characterization of iron-DI-and poly-carboxylatepyrocatechol and pyrogallol mixed ligands chelates[J]. Spectroscopy Letters, 1999, 32(3): 407-419.
    [29]
    CRAMER S D. The solubility of oxygen in brines from 0 to 300 C[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(2): 300-305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return