Citation: | ZHAO Chutong, GUAN Yanyan, ZHANG Ze, WANG Xiaona, GAO Ming, WU Chuanfu, WANG Qunhui. EFFECT OF FLY ASH INCORPORATION ON HYDRATION MECHANISM AND HEAVY METAL SOLIDIFICATION/STABILIZATION EFFECT ON SLAG-BASED BACKFILLFING CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 213-220,189. doi: 10.13205/j.hjgc.202312026 |
[1] |
龙於洋, 濮锴, 沈东升, 等. 基于文献计量学的生活垃圾焚烧飞灰资源化利用研究现状及发展趋势分析[J]. 安全与环境学报, 2022:1-6.
|
[2] |
张喆, 邹良栋, 王永康, 等. 固化/稳定化飞灰在酸性环境中重金属浸出行为研究[J]. 环境卫生工程, 2022,30(5):72-82.
|
[3] |
罗国鹏, 张凯, 王进进, 等. 垃圾焚烧炉二恶英排放的控制策略及催化塔的记忆效应[J]. 环境工程学报, 2022,16(7):2241-2248.
|
[4] |
黄俊宾, 陈芳. 生活垃圾焚烧飞灰资源化利用研究[J]. 广州化工, 2022,50(20):163-165.
|
[5] |
肖俊炜. 水泥窑协同处置垃圾焚烧飞灰的技术途径探究[J]. 节能与环保, 2022(8):82-83.
|
[6] |
李欢, 杨佳, 魏秀珍, 等. 氯氧镁水泥对生活垃圾焚烧飞灰固化作用及影响因素研究[J]. 能源环境保护, 2022,36(6):38-46.
|
[7] |
ZHANG S Q, SHI T Y, NI W, et al. The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash-slag-based agent[J]. Journal of Hazardous Materials, 2021,415.
|
[8] |
LI J, ZHANG S, WANG Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks[J]. Journal of Hazardous Materials, 2020,400(prepublish).
|
[9] |
XU C, NI W, LI K, et al. Hydration mechanism and orthogonal optimisation of mix proportion for steel slag-slag-based clinker-free prefabricated concrete[J]. Construction and Building Materials, 2019,228.
|
[10] |
SHI H, KAN L. Characteristics of Municipal Solid Wastes Incineration (mswi) Fly Ash-cement Matrices and Effect of Mineral Admixtures on Composite System[J]. Construction and Building Materials, 2009,23(6).
|
[11] |
郭利杰, 张雷, 李文臣. 有色冶金渣制备胶凝材料研究现状与展望[J]. 黄金科学技术, 2020,28(5):621-636.
|
[12] |
LIU J, HU L, TANG L, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021,402.
|
[13] |
YANYING B, WEICHAO G, XIAOLIANG W, et al. Utilization of municipal solid waste incineration fly ash with red mud-carbide slag for eco-friendly geopolymer preparation[J]. Journal of Cleaner Production, 2022,340.
|
[14] |
马保国, 柯凯, 李相国, 等. 不同重金属离子对硅酸盐水泥熟料烧成的影响[J]. 中国水泥, 2007(12):64-65.
|
[15] |
WANG X, NI W, LI J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019,125(C).
|
[16] |
LIU X, ZHAO X, YIN H, et al. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior[J]. Journal of Hazardous Materials, 2018,349.
|
[17] |
CHEN Y, LIU P, YU Z. Study on degradation of macro performances and micro structure of concrete attacked by sulfate under artificial simulated environment[J]. Construction and Building Materials, 2020,260.
|
[18] |
WANG X, NI W, JIN R, et al. Formation of Friedel's salt using steel slag and potash mine brine water[J]. Construction and Building Materials, 2019,220.
|
[19] |
ZHANG Y, ZHANG S, NI W, et al. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials[J]. Chemosphere, 2019,223:117-123.
|
[20] |
王昕, 刘晶, 汪澜, 等. C—S—H凝胶对Pb(Ⅱ)的吸附固化作用[J]. 硅酸盐通报, 2012,31(5):1039-1043.
|
[21] |
王昕, 颜碧兰, 汪澜, 等. 不同钙硅比C—S—H对多种重金属离子的俘获及其稳定性[J]. 硅酸盐通报, 2012,31(6):1356-1362.
|
[22] |
ZHISHENG R, LU W, HAO W, et al. Solidification/stabilization of lead-contaminated soils by phosphogypsum slag-based cementitious materials[J]. The Science of the Total Environment, 2022,857(P3).
|
[23] |
YIERFAN M, KANG G, BING C, et al. Recycling of heavy metal contaminated river sludge into unfired green bricks: strength, water resistance, and heavy metals leaching behavior: a laboratory simulation study[J]. Journal of Cleaner Production, 2022,342.
|