Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Guan, ZHANG Fangbin. APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 241-246,318. doi: 10.13205/j.hjgc.202312030
Citation: WANG Guan, ZHANG Fangbin. APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 241-246,318. doi: 10.13205/j.hjgc.202312030

APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS

doi: 10.13205/j.hjgc.202312030
  • Received Date: 2023-06-01
    Available Online: 2024-03-08
  • For the iron and steel production process, a smart dust control platform combining the characteristics of organization and production management is realized. Based on industrial internet, a two-level management system of production field monitoring and production scheduling is established in the platform. This platform collects data from the iron and steel production process, the working conditions of the non-craft dust removal field, running parameters, and energy consumption. Then the data are analyzed and processed with the method of artificial intelligence to realize the functions of production field management, energy consumption analytics and optimization, process monitoring, and safe warning based on smart image recognition. Safe encryption technology is applied in the platform to admit office personal computers and mobile terminals to get access to the real-time producing and smart warning information from the platform. The platform complies with the third grade of the China National Standard of Intelligent Manufacturing Capability Maturity (GB/T 39117—2020). The real application of the platform shows that the platform can reduce the accident checking and repairing time by 15.29%, improve the total producing efficiency per ton of steel by 37.84%, and decrease the electrical energy consumption per ton of steel by 11.43%.
  • [1]
    张笛,曹宏斌,赵赫,等.工业污染控制发展历程及趋势分析[J].环境工程,2022,40(1):1-7

    ,206.
    [2]
    中国钢铁工业协会.2022中国钢铁工业年鉴[M].北京:中国钢铁工业年鉴社,2022:56-58.
    [3]
    王新东,田京雷,宋程远. 大型钢铁企业绿色制造创新实践与展望[J].钢铁,2018,53(2):1-9.
    [4]
    王广,张宏强,苏步新,等. 我国钢铁工业碳排放现状与降碳展望[J].化工矿物与加工,2021,50(12):55-64.
    [5]
    于勇,朱廷钰,刘霄龙.中国钢铁行业重点工序烟气超低排放技术进展[J].钢铁,2019,54(9):1-11.
    [6]
    国家发展改革委、科技部、工业和信息化部,等.关于"十四五"大宗固体废弃物综合利用的指导意见[J].再生资源与循环经济,2021,14(4):1-3.
    [7]
    王新东,侯长江,田京雷.钢铁行业烟气多污染物协同控制技术应用实践[J].过程工程学报,2020,20(9):997-1007.
    [8]
    何坤,王立.中国钢铁工业生产能耗的发展与现状[J].中国冶金,2021,31(9):26-35.
    [9]
    刘国华.钢铁企业电除尘器技术发展历程及运行现状分析[C]//2014年全国冶金能源环保生产技术会论文集,2014:470-472.
    [10]
    环境保护部. 钢铁工业除尘工程技术规范:HJ 435—2008[S].北京:中国环境科学出版社,2008:9-18.
    [11]
    吕孟天予.高炉出铁场环保除尘设计[J].天津冶金,2021,9(3):64-67.
    [12]
    吕晓鹏, 李雪锋, 李文新,等. 钢铁转炉除尘风机变频节能改造[J].冶金能源,2012,31(1):4.
    [13]
    于恒.钢铁企业除尘灰综合利用现状与展望[J].矿产保护与利用,2021(4):164-171.
    [14]
    伍颖, 姚俊, 彭波. 浅议钢铁冶金除尘灰的处理工艺[J].低碳世界,2019,9(12):30-31.
    [15]
    卢山, 潘智斌, 周永新. 高炉除尘灰处理技术[J].广西节能,2010(1):33-36.
    [16]
    高婴劢.工业互联网促进制造业价值链持续提升[N].中国证券报,2015-08-17(A13).
    [17]
    周济.走向新一代智能制造[J].中国科技产业,2018(6):20.
    [18]
    周济.引领新一轮工业革命[N].中国信息化周报,2018-10-15(7).
    [19]
    周济,周艳红,王柏村,等.面向新一代智能制造的人-信息-物理系统(HCPS)[J].Engineering,2019,5(4):71.
    [20]
    刘玠.人工智能推动冶金工业变革[J].钢铁,2020,55(6):1.
    [21]
    王万良,张兆娟,高楠,等.基于人工智能技术的大数据分析方法研究进展[J].计算机集成制造系统,2019,25(5):529.
    [22]
    李瑞琪,韦莎,程雨航,等.人工智能技术在智能制造中的典型应用场景与标准体系研究[J].中国工程科学,2018(4):112.
    [23]
    李新创.新时代钢铁工业高质量发展之路[J].钢铁,2019,54(1):1.
    [24]
    邓万里.智能制造视野下钢铁企业能源管控系统展望[J].钢铁,2020,55(11):1.
    [25]
    王春梅,周东东,徐科,等.综述钢铁行业智能制造的相关技术[J].中国冶金,2018,28(7):1.
    [26]
    姚林,王军生.钢铁流程工业智能制造的目标与实现[J].中国冶金,2020,30(7):1.
    [27]
    刘文仲.中国钢铁工业智能制造现状及思考[J].中国冶金,2020,30(6):1.
    [28]
    颉建新,张福明.钢铁制造流程智能制造与智能设计[J].中国冶金,2019,29(2):1.
    [29]
    王晓连,迟京东.智能制造促进钢铁工业转型升级[J].冶金自动化,2018,42(3):1.
    [30]
    李新创.智能制造助力钢铁工业转型升级[J].中国冶金,2017,27(2):1.
  • Relative Articles

    [1]YAN Han, WANG Shengnan, CHEN Zhuo, DAO Guohua, SHEN Moyu, GUO Hongfa, YANG Jiaojiao, ZHU Yu, PAN Min, HU Hongying. CHARACTERISTICS OF ORGANIC POLLUTANTS (COD) AND THEIR SOURCE IN DIANCHI LAKE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 113-119. doi: 10.13205/j.hjgc.202407012
    [2]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [3]HU Xiaobing, LI Jingjing, SHEN Yijun, CHANG Jing, LIU Haoyu, SU Junwen, ZHONG Meiying. EFFECT OF INFLUENT COD CONCENTRATION ON MOTION VELOCITY OF MICROFAUNA IN ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 109-115. doi: 10.13205/j.hjgc.202307015
    [4]LI Qiuhua, WANG Qunhui. ADVANCED TREATMENT OF SOLID WASTE LANDFILL LEACHATE BY A COMBINED PROCESS OF Fe/C MICROELECTROLYSIS-FENTON OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 18-23. doi: 10.13205/j.hjgc.202203004
    [5]FU Li-ya, LI Min, ZHOU Jian, WU Chang-yong, ZHU Chen, YU Yin, SONG Yu-dong. MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021
    [6]LIU Si-yao, ZHAO Rui, YU Yang, TIAN Xiao-gang, LUO Jin-qi, ZHANG Shu-jun. DIVISION OF WATER CONTROL-UNIT IN SMALL WATERSHED BASED ON MULTI-CRITERIA DECISION MAKING: A CASE OF NANHE BASIN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 78-85. doi: 10.13205/j.hjgc.202012014
    [7]LI Ya-feng, ZHANG Ce, SHAN Lian-bin, ZHANG Lei. EXPERIMENTAL STUDY ON TREATMENT OF PHENOL WASTEWATER BY THREE-DIMENSIONAL ELECTRODE FENTON METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 1-5. doi: 10.13205/j.hjgc.202009001
    [13]Yang Dong, Wang Shaopo, Yu Jingjie, Sun Liping, Du Jinshan. ANALYSIS OF CARBON CONVERSION PATHWAY IN MODIFIED OXIDATION DITCH BALL/MEMBRANE INTEGRATED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 11-15. doi: 10.13205/j.hjgc.201502003
  • Cited by

    Periodical cited type(10)

    1. 马勤,毛雅芬. 城市污水处理技术的进展与未来挑战:以持续减排为目标. 黑龙江环境通报. 2024(03): 148-150 .
    2. 甘海娇. 组合人工湿地技术在污水处理厂尾水深度净化中的应用. 化工设计通讯. 2024(06): 144-146+150 .
    3. 江志健. 市政道路桥梁污水处理工艺及其回用技术分析. 水上安全. 2024(17): 78-80 .
    4. 罗秦格,李航哲,李凯,文刚,黄廷林. 氯化锂共混改性对PVDF超滤膜耐氯性的影响. 环境工程. 2024(09): 148-155 . 本站查看
    5. 郝燕,孙广东,代攀,张瑜,李彦,邹浩然,肖康. 阵列平板膜污染分析与清洗应用. 膜科学与技术. 2024(06): 122-131 .
    6. 黄青,杨平,杨忠启,马潇然,周家中,吴迪. MBBR和MBR工艺的污水处理效果与碳排放分析. 中国给水排水. 2023(16): 99-104 .
    7. 凌国峰,克立方. 膜生物反应技术在环境工程污水处理中的实践探究. 产业创新研究. 2023(18): 127-129 .
    8. 马志刚,芦秀青,王静,沈思彤,周忠波. 不同无机碳水平下MBR运行性能与膜污染行为研究. 环境科技. 2023(06): 8-13 .
    9. 朱万进. MBR膜技术用于污水处理的研究分析. 山西化工. 2023(12): 191-194 .
    10. Yisheng Shao,Yijian Xu. Challenges and countermeasures of urban water systems against climate change:a perspective from China. Frontiers of Environmental Science & Engineering. 2023(12): 190-196 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 82.2 %META: 82.2 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.6 %其他: 11.6 %China: 0.8 %China: 0.8 %上海: 0.8 %上海: 0.8 %临汾: 1.6 %临汾: 1.6 %保定: 0.8 %保定: 0.8 %北京: 6.2 %北京: 6.2 %南京: 3.9 %南京: 3.9 %南通: 0.8 %南通: 0.8 %台州: 0.8 %台州: 0.8 %大同: 0.8 %大同: 0.8 %天津: 1.6 %天津: 1.6 %宣城: 0.8 %宣城: 0.8 %常德: 0.8 %常德: 0.8 %张家口: 1.6 %张家口: 1.6 %成都: 1.6 %成都: 1.6 %拉贾斯坦邦: 0.8 %拉贾斯坦邦: 0.8 %晋城: 1.6 %晋城: 1.6 %朝阳: 0.8 %朝阳: 0.8 %济源: 1.6 %济源: 1.6 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 41.9 %芒廷维尤: 41.9 %苏州: 0.8 %苏州: 0.8 %西宁: 6.2 %西宁: 6.2 %西安: 0.8 %西安: 0.8 %贵阳: 0.8 %贵阳: 0.8 %运城: 5.4 %运城: 5.4 %遵义: 0.8 %遵义: 0.8 %邢台: 0.8 %邢台: 0.8 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.6 %郑州: 1.6 %长治: 0.8 %长治: 0.8 %其他China上海临汾保定北京南京南通台州大同天津宣城常德张家口成都拉贾斯坦邦晋城朝阳济源石家庄芒廷维尤苏州西宁西安贵阳运城遵义邢台邯郸郑州长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (122) PDF downloads(5) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return