Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Guan, ZHANG Fangbin. APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 241-246,318. doi: 10.13205/j.hjgc.202312030
Citation: WANG Guan, ZHANG Fangbin. APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 241-246,318. doi: 10.13205/j.hjgc.202312030

APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS

doi: 10.13205/j.hjgc.202312030
  • Received Date: 2023-06-01
    Available Online: 2024-03-08
  • For the iron and steel production process, a smart dust control platform combining the characteristics of organization and production management is realized. Based on industrial internet, a two-level management system of production field monitoring and production scheduling is established in the platform. This platform collects data from the iron and steel production process, the working conditions of the non-craft dust removal field, running parameters, and energy consumption. Then the data are analyzed and processed with the method of artificial intelligence to realize the functions of production field management, energy consumption analytics and optimization, process monitoring, and safe warning based on smart image recognition. Safe encryption technology is applied in the platform to admit office personal computers and mobile terminals to get access to the real-time producing and smart warning information from the platform. The platform complies with the third grade of the China National Standard of Intelligent Manufacturing Capability Maturity (GB/T 39117—2020). The real application of the platform shows that the platform can reduce the accident checking and repairing time by 15.29%, improve the total producing efficiency per ton of steel by 37.84%, and decrease the electrical energy consumption per ton of steel by 11.43%.
  • [1]
    张笛,曹宏斌,赵赫,等.工业污染控制发展历程及趋势分析[J].环境工程,2022,40(1):1-7

    ,206.
    [2]
    中国钢铁工业协会.2022中国钢铁工业年鉴[M].北京:中国钢铁工业年鉴社,2022:56-58.
    [3]
    王新东,田京雷,宋程远. 大型钢铁企业绿色制造创新实践与展望[J].钢铁,2018,53(2):1-9.
    [4]
    王广,张宏强,苏步新,等. 我国钢铁工业碳排放现状与降碳展望[J].化工矿物与加工,2021,50(12):55-64.
    [5]
    于勇,朱廷钰,刘霄龙.中国钢铁行业重点工序烟气超低排放技术进展[J].钢铁,2019,54(9):1-11.
    [6]
    国家发展改革委、科技部、工业和信息化部,等.关于"十四五"大宗固体废弃物综合利用的指导意见[J].再生资源与循环经济,2021,14(4):1-3.
    [7]
    王新东,侯长江,田京雷.钢铁行业烟气多污染物协同控制技术应用实践[J].过程工程学报,2020,20(9):997-1007.
    [8]
    何坤,王立.中国钢铁工业生产能耗的发展与现状[J].中国冶金,2021,31(9):26-35.
    [9]
    刘国华.钢铁企业电除尘器技术发展历程及运行现状分析[C]//2014年全国冶金能源环保生产技术会论文集,2014:470-472.
    [10]
    环境保护部. 钢铁工业除尘工程技术规范:HJ 435—2008[S].北京:中国环境科学出版社,2008:9-18.
    [11]
    吕孟天予.高炉出铁场环保除尘设计[J].天津冶金,2021,9(3):64-67.
    [12]
    吕晓鹏, 李雪锋, 李文新,等. 钢铁转炉除尘风机变频节能改造[J].冶金能源,2012,31(1):4.
    [13]
    于恒.钢铁企业除尘灰综合利用现状与展望[J].矿产保护与利用,2021(4):164-171.
    [14]
    伍颖, 姚俊, 彭波. 浅议钢铁冶金除尘灰的处理工艺[J].低碳世界,2019,9(12):30-31.
    [15]
    卢山, 潘智斌, 周永新. 高炉除尘灰处理技术[J].广西节能,2010(1):33-36.
    [16]
    高婴劢.工业互联网促进制造业价值链持续提升[N].中国证券报,2015-08-17(A13).
    [17]
    周济.走向新一代智能制造[J].中国科技产业,2018(6):20.
    [18]
    周济.引领新一轮工业革命[N].中国信息化周报,2018-10-15(7).
    [19]
    周济,周艳红,王柏村,等.面向新一代智能制造的人-信息-物理系统(HCPS)[J].Engineering,2019,5(4):71.
    [20]
    刘玠.人工智能推动冶金工业变革[J].钢铁,2020,55(6):1.
    [21]
    王万良,张兆娟,高楠,等.基于人工智能技术的大数据分析方法研究进展[J].计算机集成制造系统,2019,25(5):529.
    [22]
    李瑞琪,韦莎,程雨航,等.人工智能技术在智能制造中的典型应用场景与标准体系研究[J].中国工程科学,2018(4):112.
    [23]
    李新创.新时代钢铁工业高质量发展之路[J].钢铁,2019,54(1):1.
    [24]
    邓万里.智能制造视野下钢铁企业能源管控系统展望[J].钢铁,2020,55(11):1.
    [25]
    王春梅,周东东,徐科,等.综述钢铁行业智能制造的相关技术[J].中国冶金,2018,28(7):1.
    [26]
    姚林,王军生.钢铁流程工业智能制造的目标与实现[J].中国冶金,2020,30(7):1.
    [27]
    刘文仲.中国钢铁工业智能制造现状及思考[J].中国冶金,2020,30(6):1.
    [28]
    颉建新,张福明.钢铁制造流程智能制造与智能设计[J].中国冶金,2019,29(2):1.
    [29]
    王晓连,迟京东.智能制造促进钢铁工业转型升级[J].冶金自动化,2018,42(3):1.
    [30]
    李新创.智能制造助力钢铁工业转型升级[J].中国冶金,2017,27(2):1.
  • Relative Articles

    [1]MENG Haibo, LI Jiannan, FENG Jing, YE Bingnan, LI Peiqi, XU Han. Discussion on intelligent monitoring technology of biogas engineering and construction of intelligent control system[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 185-194. doi: 10.13205/j.hjgc.202501020
    [2]WANG Guan. INTELLIGENT DIAGNOSIS TECHNOLOGY AND ENGINEERING APPLICATION OF DUST REMOVAL SYSTEMS IN STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 72-78. doi: 10.13205/j.hjgc.202401010
    [3]QIAN Xu, CHEN Pengpeng, XIE Pengcheng, GE Chunling, LUO Wei. AN INTELLIGENT CLASSIFICATION INFRASTRUCTURE SYSTEM FOR COMMUNITY SOLID WASTE: DESIGN AND IMPLEMENTING SCHEME[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 239-246. doi: 10.13205/j.hjgc.202402028
    [4]LI Zhitu, ZHAO Yu, LI Yin. APPLICATION OF DIGITALIZATION AND INTERNET OF THINGS (IOT) TECHNOLOGY IN NETWORK LEAKAGE MANAGEMENT IN MACAO WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 46-53,77. doi: 10.13205/j.hjgc.202311009
    [5]WU Yuxing, WANG Xiaodong, CHEN Ning, YANG Benliang, YAN Tingliang, HUANG Qing. FULL-SCALE STUDY OF AN INTELLIGENT CARBON DOSING CONTROL SYSTEM IN A TYPICAL URBAN WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 212-218,271. doi: 10.13205/j.hjgc.202206027
    [6]XU Xiaozhu, ZHANG Yun, GAO Qiufeng, XU Yurong, WANG Zhanbo. LIFE CYCLE ASSESSMENT OF HYDRODESULFURIZATION WASTE METAL CATALYST RECOVERY PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 185-190. doi: 10.13205/j.hjgc.202208026
    [7]CHENG Zheng-lin, ZHU Xiao-hua, LI Peng-fei. THE SOURCE, MIGRATION, TRANSFORMATION AND EFFECT OF CHLORINE IN BLAST FURNACE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 86-91. doi: 10.13205/j.hjgc.202104014
    [8]WANG Guan, JIAO Li-jing, WANG Hui-ming, YANG Ya-juan, WANG Hui, ZHU Xiao-hua. DEVELOPMENT STATUS OF INTELLIGENT MANUFACTURING IN IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 173-176,137. doi: 10.13205/j.hjgc.202012029
  • Cited by

    Periodical cited type(1)

    1. 邵泽钧,代兵,胡佑铭,尹骏涵,刘月超. 省属企业数据中心自主可控成熟度研究——以山东省为例. 电脑与电信. 2024(05): 103-107+111 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.7 %FULLTEXT: 13.7 %META: 83.6 %META: 83.6 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.5 %其他: 18.5 %上海: 1.4 %上海: 1.4 %保定: 0.7 %保定: 0.7 %十堰: 1.4 %十堰: 1.4 %南京: 0.7 %南京: 0.7 %大同: 0.7 %大同: 0.7 %天津: 0.7 %天津: 0.7 %宣城: 0.7 %宣城: 0.7 %常州: 2.7 %常州: 2.7 %常德: 1.4 %常德: 1.4 %广州: 0.7 %广州: 0.7 %张家口: 4.1 %张家口: 4.1 %成都: 0.7 %成都: 0.7 %扬州: 2.7 %扬州: 2.7 %新竹: 1.4 %新竹: 1.4 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %杭州: 4.8 %杭州: 4.8 %温州: 0.7 %温州: 0.7 %漯河: 6.2 %漯河: 6.2 %绍兴: 0.7 %绍兴: 0.7 %芒廷维尤: 29.5 %芒廷维尤: 29.5 %芝加哥: 4.8 %芝加哥: 4.8 %衡阳: 0.7 %衡阳: 0.7 %衢州: 0.7 %衢州: 0.7 %西宁: 3.4 %西宁: 3.4 %西安: 1.4 %西安: 1.4 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.4 %运城: 1.4 %遵义: 1.4 %遵义: 1.4 %郑州: 1.4 %郑州: 1.4 %重庆: 0.7 %重庆: 0.7 %长沙: 1.4 %长沙: 1.4 %黄冈: 0.7 %黄冈: 0.7 %其他上海保定十堰南京大同天津宣城常州常德广州张家口成都扬州新竹昆明晋城杭州温州漯河绍兴芒廷维尤芝加哥衡阳衢州西宁西安贵阳运城遵义郑州重庆长沙黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(5) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return