Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Huihui, LIU Jing, LIN Naifeng, ZHANG Minxia, ZOU Changxin. HUMAN DISTURBANCE RISK ASSESSMENT AND ITS DRIVING FACTORS IN ECOLOGICAL REDLINE AREAS: A CASE STUDY IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 288-295. doi: 10.13205/j.hjgc.202312036
Citation: CHEN Huihui, LIU Jing, LIN Naifeng, ZHANG Minxia, ZOU Changxin. HUMAN DISTURBANCE RISK ASSESSMENT AND ITS DRIVING FACTORS IN ECOLOGICAL REDLINE AREAS: A CASE STUDY IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 288-295. doi: 10.13205/j.hjgc.202312036

HUMAN DISTURBANCE RISK ASSESSMENT AND ITS DRIVING FACTORS IN ECOLOGICAL REDLINE AREAS: A CASE STUDY IN TAIZHOU

doi: 10.13205/j.hjgc.202312036
  • Received Date: 2023-01-10
    Available Online: 2024-03-08
  • As the national and regional ecological security bottom line, the ecological redline can provide a scientific basis for ecological redline supervision and optimization adjustment by conducting research on human interference risk and its driving factors. This paper took Taizhou Ecological Redline Area as the research area and constructed a human interference risk assessment method based on the Bayesian network. We expressed the risk through human interference risk (risk source), ecological redline sensitivity (risk receptor), human interference accessibility (action path), and human interference risk (risk assessment result), compared and analyzed the changing trend of human activity interference risk of different human interference risk sources (building development, traffic construction, mineral mining, etc.) to the ecological redline area in 2018 and 2020. According to the tool of Sensitivity to Findings in Netica software, the main driving factors of human activities disturbing the spatial-temporal evolution of risk were explored. The results showed that: 1) compared with 2018, the risk of human interference in Taizhou decreased in 2020; 2) in 2018 and 2020, the human interference risk in Gaogang District of Taizhou was the highest, and its should be enhanced supervision and prevention; 3) the main driving factor of ecological redline is the proportion of human activity area and population density indicators. The research can provide a decision-making reference for the optimization and adjustment of ecological redline, early warning and prevention and control of human activity interference risk.
  • [1]
    邓瑜兵,刘斌,郑俊鹏,等.生态保护红线分区及管控研究综述[J].国土资源导刊,2022,19(3):1-4.
    [2]
    DEARDEN P, BENNETT M, JOHNSTON J. Trends in global protected area governance, 1992—2002[J]. Environmental Management, 2005, 36(1): 89-100.
    [3]
    LEVERINGTON F, COSTA K L, PAVESE H, et al. A global analysis of protected area management effectiveness[J]. Environmental Management, 2010, 46(5): 685-698.
    [4]
    SANG W G, AXMACHER J C. China draws lines to green future[J]. Nature, 2016, 531(7594): 305.
    [5]
    孙敏华,姜翠玲,张鹏,等.太湖流域梁塘河沉积物重金属生态风险评价[J].环境工程,2015,33(8):118-122.
    [6]
    郭凡嫡,潘俊,孙丽娜,等.辽河干流河岸带土壤中多环芳烃的污染特征与生态风险评价研究[J].环境工程,2018,36(7):155-160.
    [7]
    黄诗曼,胡庆武,李海东,等.基于RS和GIS的峨眉山风景区生态风险评价[J].环境科学研究,2020,33(12):2745-2751.
    [8]
    刘世梁, 刘芦萌, 武雪, 等. 区域生态效应研究中人类活动强度定量化评价[J]. 生态学报, 2018, 38(19): 6797-6809.
    [9]
    王洁,摆万奇,田国行.土地利用生态风险评价研究进展[J].自然资源学报,2020,35(3):576-585.
    [10]
    刘影,李丹,何蕾,等.赣南地区农业生态系统脆弱性评价及驱动力分析[J].江西师范大学学报(哲学社会科学版),2016,49(3):72-79.
    [11]
    张嘉楠. 基于SPCA的长治市生态脆弱性评价[D].北京:中国地质大学(北京),2021.
    [12]
    徐志刚, 庄大方, 杨琳. 区域人类活动强度定量模型的建立与应用[J]. 地球信息科学学报, 2009, 11(4): 452-460.
    [13]
    解若璠, 沈永明, 劳桦. 基于人为干扰度的盐城滨海湿地景观格局动态变化及响应[J]. 生态学杂志, 2022, 41(2): 351-360.
    [14]
    侯伟,翟亮,田莉,等.基于PSR模型的景观人为干扰度综合分析:以北京市为例[J]. 地理与地理信息科学, 2019, 35(6): 90-96.
    [15]
    尚国琲,马景涛,刘雨博,等.基于人类活动强度的生态保护红线优化研究[J].河北省科学院学报,2022,39(4):69-78.
    [16]
    高吉喜, 蔡明勇, 申文明, 等. 大尺度生态干扰风险评估技术方法及应用研究[J]. 中国环境科学, 2021, 41(11): 5274-5281.
    [17]
    程建龙,陆兆华,范英宏.露天煤矿区生态风险评价方法[J].生态学报,2004,24(12): 2945-2950.
    [18]
    马喜君,常志华,程建龙,等.阜新露天煤矿区生态风险分析[J].中国矿业, 2006(8):19-21,45.
    [19]
    何云川. 基于贝叶斯网络的太湖叶绿素建模及预测[D].徐州:中国矿业大学, 2022.
    [20]
    骆琳. 基于层次贝叶斯模型的成渝地区双城经济圈雾霾监测影响因素分析[D].重庆:重庆工商大学, 2022.
    [21]
    倪玲玲,王栋,王远坤,等.基于贝叶斯方法的太湖沉积物多环芳烃的生态风险评价[J].南京大学学报(自然科学),2017,53(5):871-878.
    [22]
    高沁怡,潘春霞,刘强,等.基于贝叶斯网络的林业碳汇项目风险评价[J].南京林业大学学报(自然科学版),2021,45(4):210-218.
    [23]
    袁德奎,姚鹏辉,徐晓甫,等.基于贝叶斯网络的渤海湾水体富营养化模型[J].天津大学学报(自然科学与工程技术版),2016,49(3):320-325.
    [24]
    罗建男,卢文喜,陈社明,等.基于贝叶斯网络的水环境管理研究[J].节水灌溉,2011(3):68-72.
    [25]
    李超群.基于贝叶斯网络对全国PM2.5浓度影响因素分析[J].科技创新与应用,2020(22):1-5,9.
    [26]
    危小建,谢亚娟,孙显星.基于空间贝叶斯识别城市扩张与生态保护潜在的兼容区和冲突区:以鄱阳湖生态经济区为例[J].长江流域资源与环境,2020,29(2):310-321.
    [27]
    赵欣胜,崔丽娟,李伟,等.人类活动对辽宁双台河口湿地生态系统影响评价[J].水利水电技术,2017,48(9):16-23.
    [28]
    泰州市自然资源和规划局.泰州市矿产资源总体规划(2016—2020年)[R].2017.
    [29]
    泰州市统计局.泰州统计年鉴2021[M].北京:方志出版社,2021.
    [30]
    吴楠,陈红枫,匡丕东,等.生态保护红线区干扰退化风险评价:以安徽省为例[J].生态学报, 2020, 40(16): 5571-5578.
    [31]
    吴健生,毛家颖,林倩,等.基于生境质量的城市增长边界研究:以长三角地区为例[J].地理科学,2017,37(1):28-36.
    [32]
    韩继冲,郭梦迪,杨青林,等.川西北江河源区生态环境脆弱性评价[J].湖北农业科学,2018,57(9):20-24.
    [33]
    杨湘艳,余静.基于贝叶斯网络的海洋生态环境状况评价:以山东省为例[J].海洋通报,2021,40(4):473-480.
    [34]
    赵晓光,张亦扬,杜华栋.陕北矿区不同土地类型下土壤重金属污染评价[J].环境工程,2019,37(9):188-193.
    [35]
    张新胜,蔡明勇,邰文飞,等.陕西秦岭地区生态干扰风险空间分异规律研究[J].水土保持研究,2023,30(4):115-121

    ,129.
    [36]
    武建超,任博文,刘少波.秦岭北麓生态复生技术研究[J].科学技术创新,2020(32):189-190.
  • Relative Articles

    [1]FENG Tugen, ZHENG Liuqin, ZHANG Jian, WEI Yang. A NEW RISK ASSESSMENT METHOD FOR HEAVY METAL ORGANIC COMPOUND POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 222-228. doi: 10.13205/j.hjgc.202307030
    [2]GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030
    [3]DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001
    [4]CHE Kai, YU Jinxing, LIU Kecheng, YANG Peng, FAN Hui, WEI Minglei, NIU Xiangnan, HOU Haiping. COMPARATIVE STUDY OF DIFFERENT TOXICITY EVALUATION MODELS ON HEALTH RISK ASSESSMENT OF PAHS IN SOIL OF TYPICAL SUBSTATION SITES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 128-134. doi: 10.13205/j.hjgc.202201019
    [5]ZHOU Ying, WANG Xue-mei, JIANG Yu-zhuo, ZHAO Yun-feng, JI Hong-bing. SPECIATION AND ECOLOGICAL RISK ASSESSMENT OF ARSENIC AND MERCURY IN SOIL AROUND A GOLD MINING AREA IN PINGGU DISTRICT, BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 203-210,164. doi: 10.13205/j.hjgc.202108028
    [6]LIU Song-hua, ZHOU Jing, JIN Wen-long, TANG Ming, WU Jin. HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 217-224. doi: 10.13205/j.hjgc.202105030
    [7]ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033
    [8]YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028
    [9]XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027
    [16]Sun Minhua, Jiang Cuiling, Zhang Peng, Jiang Muxian, Qiu Weijian, Huang Xiaofeng. ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN SEDIMENTS IN LIANGTANG RIVER OF TAIHU BASIN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 118-122. doi: 10.13205/j.hjgc.201508027
    [17]Zhu Huina, Yan Qing, Yin Juan. THE MODEL OF WATER QUALITY ASSESSMENT FOR LAKES BASED ON INTERVAL TYPE BAYESIAN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 130-134. doi: 10.13205/j.hjgc.201502029
    [18]Meng Ye Wang Daohan Wang Zhijiang Feng Sijing Li Xiaoxu He Yushu Wang Yonggang, . CASE ANALYSIS OF STREAM TEMPERATURE MANAGEMENT BASED ON TMDL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 123-127. doi: 10.13205/j.hjgc.201501029
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.9 %FULLTEXT: 11.9 %META: 82.2 %META: 82.2 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.9 %其他: 25.9 %乌鲁木齐: 2.2 %乌鲁木齐: 2.2 %保定: 0.7 %保定: 0.7 %南京: 1.5 %南京: 1.5 %台州: 0.7 %台州: 0.7 %大同: 0.7 %大同: 0.7 %天津: 0.7 %天津: 0.7 %宁德: 4.4 %宁德: 4.4 %宣城: 2.2 %宣城: 2.2 %常州: 1.5 %常州: 1.5 %常德: 1.5 %常德: 1.5 %广州: 0.7 %广州: 0.7 %张家口: 1.5 %张家口: 1.5 %成都: 0.7 %成都: 0.7 %昆明: 0.7 %昆明: 0.7 %晋中: 0.7 %晋中: 0.7 %晋城: 0.7 %晋城: 0.7 %杭州: 0.7 %杭州: 0.7 %温州: 0.7 %温州: 0.7 %漯河: 3.7 %漯河: 3.7 %潍坊: 1.5 %潍坊: 1.5 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 10.4 %西宁: 10.4 %西安: 1.5 %西安: 1.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 1.5 %运城: 1.5 %遵义: 1.5 %遵义: 1.5 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.5 %郑州: 1.5 %重庆: 0.7 %重庆: 0.7 %金华: 3.0 %金华: 3.0 %长沙: 0.7 %长沙: 0.7 %其他乌鲁木齐保定南京台州大同天津宁德宣城常州常德广州张家口成都昆明晋中晋城杭州温州漯河潍坊芒廷维尤芝加哥西宁西安贵阳运城遵义邯郸郑州重庆金华长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return