Citation: | HE Weiqi, CHEN Rong, LU Zhixiang, MA Xu, WU Zhijie. ANOMALY DETECTION OF SMOKE EMISSIONS BASED ON WORKING CONDITION DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 79-84. doi: 10.13205/j.hjgc.202401011 |
[1] |
LEHMANN R.3σ-rule for outlier detection from the viewpoint of geodetic adjustment[J].Journal of Surveying Engineering,2013,139(4):157-165.
|
[2] |
DUBITZKY W,WOLKENHAUER O,CHO,K H,et al.Tukey’s Honestly Significant Difference Test[M].Encyclopedia of Systems Biology,Springer,New York,2010.
|
[3] |
CHAWLA S,GIONIS A.K-means:a unified approach to clustering and outlier detection[C]//Proceedings of the 2013 SIAM International Conference on Data Mining,2013,189-197.
|
[4] |
向玲,邓泽奇,赵玥.基于SCADA数据的风电机组异常识别方法[J].太阳能学报,2020,41(11):278-284.
|
[5] |
薛美盛,王旭,冀若阳.基于支持向量机的烟气二氧化硫排放量预测模型[J].计算机系统应用,2018.27(2):186-191.
|
[6] |
WANG Y,XUE S,DING J.Research on water pollution prediction of township enterprises based on support vector regression machine[C]//E3S Web of Conferences,2021,228:02014.
|
[7] |
郭佳.基于机器学习算法的企业用电预测模型研究[D].重庆:重庆邮电大学,2019.
|
[8] |
陈维刚,张会林.基于RF-LightGBM算法在风机叶片开裂故障预测中的应用[J].电子测量技术,2020,43(1):162-168.
|
[9] |
ZHANG B,ZOU G,QIN D,et al.A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction[J].Science of the Total Environment,2021,765(3):144507.
|
[10] |
窦珊,张广宇,熊智华.基于LSTM时间序列重建的生产装置异常检测[J].化工学报,2019,70(2):481-486.
|
[11] |
赵文清,沈哲吉,李刚.基于深度学习的用户异常用电模式检测[J].电力自动化设备,2018,38(9):34-38.
|
[12] |
潘渊洋,李光辉,徐勇军.基于DBSCAN的环境传感器网络异常数据检测方法[J].计算机应用与软件,2012,29(11):69-72
,111.
|
[13] |
苏银皎,苏铁熊,王大振,等.改进小波神经网络用于火电厂污染物排放量的预测[J].计算机科学,2016,43(增刊1):508-511.
|
[14] |
王科峰.火电厂烟尘及废水污染物排放总量预测分析研究[J].环境科学与管理,2020,45(10):144-148.
|
[15] |
王印松,闫鑫,袁环环.基于改进PSO-LSSVM的烟气SO2及烟尘浓度预测[C]//2021 全国仿真技术学术会议论文集,2021:161-166.
|
[16] |
张冉,张山山,史一涛,等.火电厂大气污染物排放预测模型[J].环境工程学报,2016,10(5):2547-2550.
|
[17] |
ARIK S Ö,PFISTER T.Tabnet:attentive interpretable tabular learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(8):6679-6687.
|
[18] |
YAN J,XU T,YU Y,et al.Rainfall forecast model based on the TabNet model[J].Water,2021,13:1272.
|
[19] |
WANG Q,CHAI S,LIU Y,et al.GTFD-XTNet:a tabular learning-based ensemble approach for short-term prediction of photovoltaic power[J].IET Renew.Power Gener,2022,16:2682-2693.
|
[20] |
CHEN T,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016,785-794.
|
[21] |
KE G,MENG Q,FINLEY T,et al.LightGBM:a highly efficient gradient boosting decision tree[C]//NIPS,2017,3149-3157.
|
[22] |
WANG Z,YANG B.Attention-based bidirectional long short-term memory networks for relation classification using knowledge distillation from BERT[C]//2020 IEEE Intl Conf on Dependable,2020,562-568.
|