Citation: | TIAN Weihong, KE Xuesong, SONG Weiwei. ENVIRONMENTAL QUALITY IMPROVEMENT OF WATER QUALITY ASSURANCE ENGINEERINGS OF WATER SOURCE RESERVOIR IN URBAN HIGH-DENSITY BUILT-UP AREAS: A CASE STUDY OF SHENZHEN TIEGANG RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 191-198. doi: 10.13205/j.hjgc.202401025 |
[1] |
王新才,吴敏.关于加强南水北调中线水源地保护和管理的思考[J].长江科学院院报,2019,36(9):1-5.
|
[2] |
曹晓峰,冀泽华,兰华春,等.气候变化背景下我国湖库型水源富营养化控制与饮用水安全保障策略[J].中国工程科学,2022,24(5):34-40.
|
[3] |
WANG L,WANG S,ZHOU Y,et al.Landscape pattern variation,protection measures,and land use/land cover changes in drinking water source protection areas:a case study in Danjiangkou Reservoir,China[J].Global Ecology and Conservation,2020,21:e827.
|
[4] |
王维刚,史海滨,李仙岳,等.基于改进SWAT模型的灌溉—施肥—耕作对乌梁素海流域营养物负荷及作物产量的影响[J].湖泊科学,2022,34(5):1505-1523.
|
[5] |
KHAN S J,DEERE D,LEUSCH F D L,et al.Extreme weather events:should drinking water quality management systems adapt to changing risk profiles?[J].Water Research,2015,85:124-136.
|
[6] |
BENOTTI M J,STANFORD B D,SNYDER S A.Impact of drought on wastewater contaminants in an urban water supply[J].Journal of Environmental Quality,2010,39(4):1196-1200.
|
[7] |
PAERL H W,PAUL V J.Climate change:links to global expansion of harmful cyanobacteria[J].Water Research,2012,46(5):1349-1363.
|
[8] |
RITSON J P,GRAHAM N J D,TEMPLETON M R,et al.The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies:a UK perspective[J].Science of the Total Environment,2014,473-474.
|
[9] |
陈宇琛,林育青,陈求稳,等.澜沧江高坝大库物质迁移转化特征及其机制[J].水科学进展,2022,33(4):531-541.
|
[10] |
张洪刚,焦茹媛,王聪,等.义乌市水库型水源地保护与水质提升策略研究:以岩口水库为例[J].环境保护科学,2021,47(2):9-14.
|
[11] |
王俊,郭生练.三峡水库汛期控制水位及运用条件[J].水科学进展,2020,31(4):473-480.
|
[12] |
徐进超,李云,宣国祥,等.船闸泄水作用下引航道中动水冲沙规律[J].水科学进展,2016,27(2):186-195.
|
[13] |
邓铭江,黄强,畅建霞,等.广义生态水利的内涵及其过程与维度[J].水科学进展,2020,31(5):775-792.
|
[14] |
刘昌明,门宝辉,赵长森.生态水文学:生态需水及其与流速因素的相互作用[J].水科学进展,2020,31(5):765-774.
|
[15] |
金菊良,陈梦璐,郦建强,等.水资源承载力预警研究进展[J].水科学进展,2018,29(4):583-596.
|
[16] |
HUA R X,ZHANG Y Y.Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs:a case study of drinking water sources of Shenzhen,China[J].Water,2017,9(11):825.
|
[17] |
张诗瑶.浅水型水库水动力水质数值模拟及水环境改善措施研究[D].天津:天津大学,2019.
|
[18] |
黄粤,陈曦,包安明,等.干旱区资料稀缺流域日径流过程模拟[J].水科学进展,2009,20(3):332-336.
|
[19] |
陈友媛,胡广鑫,杨世迎,等.北方浅水湖泊冬季结冰对风生流的影响[J].水科学进展,2012,23(6):837-843.
|
[20] |
徐安娜.WASP模型及其在水库水质模拟研究中的应用[D].北京:华北电力大学,2014.
|
[21] |
AFSHAR A,KAZEM H,SAADATPOUR M.Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2):application to karkheh reservoir,iran[J].Water Resources Management,2011,25(10):2613-2632.
|
[22] |
WANG Q,LIU R,MEN C,et al.Temporal-spatial analysis of water environmental capacity based on the couple of SWAT model and differential evolution algorithm[J].Journal of Hydrology,2019,569:155-166.
|
[23] |
李鹏峰.东庄水库水环境数值模拟及水质评价研究[D].西安:西安理工大学,2020.
|
[24] |
郑婷婷,徐明德,景胜元,等.汾河水库水动力及水质数值模拟[J].水利水运工程学报,2016(3):105-113.
|
[25] |
Wang Y,Zhou X,Engel B.Water environment carrying capacity in Bosten Lake basin[J].Journal of Cleaner Production,2018,199:574-583.
|
[26] |
宋为威,逄勇.秦淮河流域控源截污与生态补水联合效应研究[J].水力发电学报,2018,37(1):31-39.
|
[27] |
WANG Y G,ZHANG W S,ZHAO Y X,et al.Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River[J].Journal of Hydrology,2016,541:1348-1362.
|
[28] |
冯龙庆,刘明亮,张运林,等.夏季丰水期河流输入对太湖有色可溶性有机物的贡献[J].水科学进展,2011,22(1):104-111.
|
[29] |
ZHANG X Q,DUAN B S,HE S Y,et al.Simulation study on the impact of ecological water replenishment on reservoir water environment based on Mike21:taking Baiguishan reservoir as an example[J].Ecological Indicators,2022,138:108802.
|
[30] |
董飞,刘晓波,彭文启,等.地表水水环境容量计算方法回顾与展望[J].水科学进展,2014,25(3):451-463.
|
[31] |
廖临毓.城市浅水湖泊二维水动力水质耦合模型应用研究[D].武汉:华中科技大学,2016.
|
[32] |
朱党生,张建永,史晓新,等.城市饮用水水源地安全评价(Ⅱ):全国评价[J].水利学报,2010,41(8):914-920.
|
[33] |
黄真理,李玉粱,李锦秀,等.三峡水库水环境容量计算[J].水利学报,2004(3):7-14.
|
[34] |
周孝德,郭瑾珑,程文,等.水环境容量计算方法研究[J].西安理工大学学报,1999(3):1-6.
|
[35] |
HUANG S L,ZHANG Y,LI Q,et al.Research on water environmental capacity of urban river:a case study of Tuohe River in Suzhou City,Northern Anhui Province[J].Advanced Materials Research,2011,356/357/358/359/360:867-870.
|
[36] |
Bui L T,Pham H T H.Linking hydrological,hydraulic and water quality models for river water environmental capacity assessment[J].Science of the Total Environment,2023,857:159490.
|
[37] |
嵇晓燕,杨凯,李文攀,等.国家地表水环境质量评价、分析与表征系统初步构建[J].中国环境监测,2022,38(5):38-46.
|
[38] |
马世豪,何星海.《城镇污水处理厂污染物排放标准》浅释[J].给水排水,2003(9):89-94.
|
[1] | LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016 |
[2] | SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020 |
[3] | JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005 |
[4] | LIAO Xiaoshu, ZHU Chengyu, CHOU Yue, ZHONG Min, ZHOU Bingling, ZHANG Qian. PERSULFATE ACTIVATION VIA NANOSCALE ZERO-VALENT IRON BASED BIOCHAR FOR OXYTETRACYCLINE DEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 118-124,95. doi: 10.13205/j.hjgc.202208016 |
[5] | QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007 |
[6] | FAN Xinqi, CHEN Rui, LI Wanting, WEI Yuquan, LIU Yongdi, ZHAN Yabin, LI Ji. EFFECT OF VENTILATION ON DECOMPOSITION AND NITROGEN CONVERSION OF RAPID THERMOPHILIC COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 71-78. doi: 10.13205/j.hjgc.202204011 |
[7] | HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006 |
[8] | HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014 |
[9] | WANG Qi, GUO Shu-hai, LI Gang, WANG Sa, NIU Ming-fen, YIN Zhi-hui. PETRILEUM CONTAMINATED SOIL CLEANING: SURFACTANT-INORGANIC ELECTROLYTE-PETROLEUM HYDROCARBON MATCHING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 195-203,110. doi: 10.13205/j.hjgc.202103028 |
[10] | LIAO Li-ming, PAN Jia-qi, CHEN Yu, HU Yao-yuan, MO Hui, LU Yu, SU Cheng-yuan. ANALYSIS OF EFFECT OF ADDITION OF CHINESE HERBAL RESIDUE ON FOOD WASTE COMPOSTING BASED ON EEM AND HIGH-THROUGHPUT SEQUENCING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 142-147. doi: 10.13205/j.hjgc.202101022 |
[11] | ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017 |
[12] | GUO Zhi-chao, XU Xian-bao, XU Ting-ting, ZHAO Ai-hua, TAI Jun, LIU Ya-nan, XUE Gang, LI Xiang. ANALYSIS ON FERMENTATION PATHWAY AND CAPROATE PRODUCTION FROM FOOD WASTE BY DIFFERENT INOCULUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 160-168. doi: 10.13205/j.hjgc.202109023 |
[13] | SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015 |
[14] | LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027 |
[15] | ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015 |
[16] | SONG Na, REN Yuan-yuan, WANG Wan-qing, ZHANG Li-rong, GUAN Wei-jie, ZHANG Shuang, WANG Qun-hui. MECHANISM ANALYSIS OF BACTERIOSTATIC EFFECT ON FOOD WASTE ANAEROBIC PRESERVATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 41-46. doi: 10.13205/j.hjgc.202008007 |
[17] | HUO Li-li, HU Yu-lin, CHEN Wei, ZHONG Hua, LIU Guan-sheng, YANG Xin. TRANSPORT BEHAVIORS AND INFLUENCE FACTORS OF SURFACTANTS IN SUBSURFACE POROUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 207-215. doi: 10.13205/j.hjgc.202010033 |
[18] | LI Tong, WANG Pan, CHEN Xi-teng, ZHAO Ze-xi, MA Li-juan, REN Lian-hai. DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE AND FOOD WASTE AND ALLEVIATION OF ACID INHIBITION BY ACTIVATED CARBON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 213-218. doi: 10.13205/j.hjgc.202009034 |
[19] | CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022 |
[20] | CHEN Jun-hua, ZHU Hong, SHAN Hui-feng, XING Yi-lan. PERFORMANCE OF SURFACTANTS ENHANCED AEROBIC BIOREMEDIATION OF PAHs CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 185-190. doi: 10.13205/j.hjgc.202005032 |