Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yu-cheng, CHEN Wen-bo, CHEN Yuan-yuan, CHEN Ming-yan. EFFECT OF CEMENT KILN CO-PROCESSING EXTRACTED RAFFINATE CUTTINGS ON PERFORMANCE OF THE CEMENT CLINKER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 157-162. doi: 10.13205/j.hjgc.202011026
Citation: ZHANG Jianqiao, WANG Lei, LIU Wenjie, YANG Lei, JIN Wenbiao. SUSTAINABLE ACTIVATION OF PERACETIC ACID WITH MoS2 FOR DEGRADATION OF ACIDIC ORANGE 7[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 135-143. doi: 10.13205/j.hjgc.202402016

SUSTAINABLE ACTIVATION OF PERACETIC ACID WITH MoS2 FOR DEGRADATION OF ACIDIC ORANGE 7

doi: 10.13205/j.hjgc.202402016
  • Received Date: 2023-02-01
    Available Online: 2024-04-28
  • Acidic orange 7(AO7) is a typical anionic azo dye, and has attracted widespread attention for its potential hazards to the environment and human health. In this study, molybdenum disulfide(MoS2) was used as an activator of peroxyacetic acid(PAA) for the degradation of AO7. The results indicated that the degradation efficiency of AO7 in the MoS2/PAA system was much higher than that in the MoS2/H2O2 system and MoS2/PI system. The degradation efficiency of AO7 reached 84.2% under the condition of ρ(MoS2)0=0.4 g/L, c(PAA)0=0.4 mmol/L, and initial pH=3.0. In addition, the MoS2/H2O2 system can efficiently degrade various pollutants such as MO, ACE, DCF, SMX, and TC. EPR and quenching experiments result indicated that ·OH, R-O·, and 1O2 generated by the MoS2/PAA system were the main reactive oxygen species for AO7 degradation. UV full wavelength scanning revealed that the azo bonds and aromatic fragments(naphthalene and benzene rings) of AO7 were rapidly disrupted under the attack of active free radicals. Further investigation was conducted on the effects of initial pH, MoS2 dosage, PAA concentration, coexisting water matrix on AO7 degradation. In the co-existing water matrix experiment, Cl-, SO42- and HCO-3 did not affect the removal of AO7, while humic acid(HA) inhibited it. In natural water bodies, the MoS2/PAA system still exhibits strong oxidation performance(up to 60%) towards AO7. Overall, this study provides new knowledge on the degradation of organic pollutants within the MoS2/PAA system.
  • [1]
    张鹏,徐瑞霞,刘舒怡,等.MOFs衍生CuO/ZnO催化剂的制备及其光催化性能的研究[J].环境工程,2022,40(4):35-42.
    [2]
    LIN J,ZOU J,CAI H,et al.Hydroxylamine enhanced Fe(Ⅱ)-activated peracetic acid process for diclofenac degradation:efficiency,mechanism and effects of various parameters[J].Water Research,2021,207:117796.
    [3]
    王静晓,朱柯安,陈飞.氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J].环境科学研究,2021,34(12):2850-2858.
    [4]
    ZHANG P,ZHANG X,ZHAO X,et al.Activation of peracetic acid with zero-valent iron for tetracycline abatement:the role of Fe(Ⅱ) complexation with tetracycline[J].Journal of Hazardous Materials,2022,424:127653.
    [5]
    DAI C,LI S,DUAN Y,et al.Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole:implications for groundwater remediation[J].Water Research,2022,216:118347.
    [6]
    吴兆翔.紫外/过氧乙酸(UV/PAA)体系降解典型β受体阻滞剂研究[D].武汉:华中科技大学,2020.
    [7]
    田丹,吴玮,沈芷璇,等.Co(Ⅱ)活化过氧乙酸降解有机染料研究[J].环境科学学报,2018,38(10):4023-4031.
    [8]
    武利园,郭朋朋,李海燕,等.MoS2催化活化单过硫酸盐降解有机污染物研究现状[J].复合材料学报,2021,38(5):1348-1357.
    [9]
    WANG Z,MI B.Environmental applications of 2D molybdenum disulfide (MoS2) Nanosheets[J].Environmental Science & Technology,2017,51(15):8229-8244.
    [10]
    ZHOU H,LAI L,WAN Y,et al.Molybdenum disulfide (MoS2):a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J].Chemical Engineering Journal,2020,384:123264.
    [11]
    DU M,YI Q,JI J,et al.Sustainable activation of peroxymonosulfate by the Mo(Ⅳ) in MoS2 for the remediation of aromatic organic pollutants[J].Chinese Chemical Letters,2020,31(10):2803-2808.
    [12]
    AO X W,ELORANTA J,HUANG C H,et al.Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water:a review[J].Water Research,2021,188:116479.
    [13]
    KIM J,ZHANG T,LIU W,et al.Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J].Environmental Science & Technology,2019,53(22):13312-13322.
    [14]
    CHI H,HE X,ZHANG J,et al.Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition:efficiency,mechanisms and pathway[J].Chemical Engineering Journal,2019,361:764-772.
    [15]
    刘晓娜,黄韬博,陈龙,等.自组装超分子前驱体制备管状氮化碳及模拟太阳光光催化降解水中双氯芬酸[J].环境科学研究,2021,34(12):2831-2840.

    [16]
    HE M,LI W,XIE Z,et al.Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation:enhancement mechanism and strategy for extending applicability[J].Water Research,2022,222:118887.
    [17]
    KIM J,DU P,LIU W,et al.Cobalt/peracetic acid:advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J].Environmental Science & Technology,2020,54(8):5268-5278.
    [18]
    CAI M,SUN P,ZHANG L,et al.UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J].Environmental Science & Technology,2017,51(24):14217-14224.
    [19]
    HUIE R E,NETA P.Rate constants for one-electron oxidation by methylperoxyl radicals in aqueous solutions[J].International Journal of Chemical Kinetics,1986,18(10):1185-1191.
    [20]
    王诗生,赵大唯,章慧娟,等.磁性氮掺杂碳材料活化过硫酸盐降解酸性橙7[J].环境科学学报,2022,42(5):237-246.
    [21]
    SUN Z,LI S,DING H,et al.Electrochemical/Fe3+/peroxymonosulfate system for the degradation of Acid Orange 7 adsorbed on activated carbon fiber cathode[J].Chemosphere,2020,241:125125.
    [22]
    姜希望.改性氮化碳光催化活化过硫酸盐降解酸性橙7的研究[D].武汉:武汉纺织大学,2017.
    [23]
    张古承,张静,万子谦,等.铁锰双金属氧化物对过硫酸氢钾降解酸性橙7的催化效果[J].环境科学研究,2015,28(12):1902-1907.
    [24]
    WANG J,WANG Z,CHENG Y,et al.Molybdenum disulfide (MoS2) promoted sulfamethoxazole degradation in the Fe(Ⅲ)/peracetic acid process[J].Separation and Purification Technology,2022,281:119854.
    [25]
    滕晓宇,郑云松,蔡其正,等.沉积物活化氧气和过氧化氢产生羟自由基降解三氯乙烯的比较研究[J].环境科学研究,2022,35(2):547-555.
    [26]
    颉亚玮,徐冉云,丁伟,等.含氯离子苯酚废水高级氧化过程AOX生成研究[J].环境工程,2022,40(5):1-8.
    [27]
    WANG J,WANG Z,CHENG Y,et al.Molybdenum disulfide (MoS2):a novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J].Water Research,2021,201:117291.
    [28]
    宋江燕,李方鸿,吴根义,等.氯咪巴唑在臭氧降解过程中的影响因素及其降解产物[J].环境科学研究,2022,35(2):478-487.
  • Relative Articles

    [1]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [2]CHEN Yilin, XIN Wencai, CHEN Meng, CHEN Shi, FU Weiliang, ZHANG Chengzhen, ZHANG Xukun, XING Pu. RESEARCH PROGRESS OF SLUDGE TRANSPORTATION THROUGH PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 248-252. doi: DOI:10.13205/j.hjgc.202207034
    [3]CHE Kai, HAN Zhongge, YU Jinxing, CHEN Chongming, LIU Songtao, GU Xingjia. EXPERIMENTAL STUDY ON MICROWAVE DESORPTION OF SOIL CONTAMINATED BY INSULATING OIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 127-131,138. doi: 10.13205/j.hjgc.202202020
    [4]LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
    [5]CHE Kai, YU Jinxing, LIU Kecheng, YANG Peng, FAN Hui, WEI Minglei, NIU Xiangnan, HOU Haiping. COMPARATIVE STUDY OF DIFFERENT TOXICITY EVALUATION MODELS ON HEALTH RISK ASSESSMENT OF PAHS IN SOIL OF TYPICAL SUBSTATION SITES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 128-134. doi: 10.13205/j.hjgc.202201019
    [6]NIU Zhenru, LI Feifei, ZHANG Youjun, QU Weigui, CONG Hui, LIU Shigang, ZHANG Jia. SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 94-101,228. doi: 10.13205/j.hjgc.202203015
    [7]LI Huaxiang, ZHAO Xiujun, LIU Yinghua, LUO Zhiji. SPATIAL DISTRIBUTION AND RISK ASSESSMENT OF TUNGSTEN POLLUTION OF SOIL IN A SMELTING SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 141-147. doi: 10.13205/j.hjgc.202201021
    [8]LI Sheng-hong, ZHU Fen-fen. COMPARISON AND CHARACTERISTICS OF BIOCHAR BY SLUDGE AND DEGREASING-SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 154-159,192. doi: 10.13205/j.hjgc.202109022
    [9]LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
    [10]WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
    [11]ZHANG Hua, YANG Xue-feng, GU Chao-yang, SUN Zhi-chao, ZHAO Guang-jun, XUE Fang-qin. RESEARCH AND AN ENGINEERING DEMONSTRATION OF SLUDGE DEWATERING TECHNOLOGY FOR DYEING INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 152-156. doi: 10.13205/j.hjgc.202011025
    [12]LI Qiang, GAO Cun-fu, CAO Ying, HE Lian-sheng, LIU Xiao-xue. COMPARISON AND VERIFICATION OF HEXAVALENT CHROMIUM DETECTION METHODS IN SOLID SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 47-51. doi: 10.13205/j.hjgc.202006008
    [13]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [14]LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012
    [15]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [17]Liu Xiao'er. POLLUTION AND ENVIRONMENTAL QUALITY EVALUATION FOR SOIL IN THE OIL PRODUCTION ZONES OF AN OIL FIELD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 126-129. doi: 10.13205/j.hjgc.201502028
    [18]Li Yanni Luo Zhaohui Liu Shan Li Jie Huang Jingjing, . GROUNDWATER POLLUTION RISK ASSESSMENT ON ASH FIELD IN GUIZHOU: TAKING THE YIJIAZHAI ASH FIELD AS AN EXAMPLE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 120-122. doi: 10.13205/j.hjgc.201501028
    [19]Liu Zengjun, Xia Xu, Zhang Xu, Li Guanghe, Jiang Lin. STUDY OF REMEDIATION AND LONG-TERM EFFECT OF AGENTS ON CHROMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 160-163. doi: 10.13205/j.hjgc.201502036
    [20]Zhao Ligang, Pu Shengyan, Yang Jinyan, Yu Jing, Wang Youle. THE Cr( VI) POLLUTION CHARACTERISTICS OF GROUNDWATER AND SOIL IN THE SURROUNDINGS OF A CHROMIUM SLAG SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 117-121. doi: 10.13205/j.hjgc.201502026
  • Cited by

    Periodical cited type(2)

    1. 宋海旺,李子浩,秦显祥,周琳,程丽华,毕学军. 紫外/次氯酸钠预处理对超滤膜污染的影响. 青岛理工大学学报. 2023(06): 123-130 .
    2. 周琳,李子浩,李沛卓,杨强,高爱丽,程丽华,毕学军. UV-NaClO顺序消毒对污水中大肠菌群的灭活效果. 环境工程学报. 2022(10): 3213-3220 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 78.6 %META: 78.6 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.0 %其他: 14.0 %其他: 0.8 %其他: 0.8 %China: 1.6 %China: 1.6 %[]: 0.3 %[]: 0.3 %上海: 1.8 %上海: 1.8 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %云浮: 0.3 %云浮: 0.3 %佛山: 0.5 %佛山: 0.5 %信阳: 0.3 %信阳: 0.3 %北京: 2.4 %北京: 2.4 %南昌: 1.3 %南昌: 1.3 %厦门: 0.5 %厦门: 0.5 %台州: 0.8 %台州: 0.8 %合肥: 0.3 %合肥: 0.3 %吉安: 0.3 %吉安: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 1.1 %天津: 1.1 %太原: 0.3 %太原: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.5 %广州: 0.5 %延安: 0.3 %延安: 0.3 %张家口: 2.1 %张家口: 2.1 %徐州: 0.3 %徐州: 0.3 %成都: 1.1 %成都: 1.1 %无锡: 0.3 %无锡: 0.3 %昆明: 1.3 %昆明: 1.3 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.5 %杭州: 0.5 %桂林: 0.8 %桂林: 0.8 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.3 %沧州: 0.3 %济南: 0.5 %济南: 0.5 %济源: 0.3 %济源: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.8 %漯河: 1.8 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.3 %福州: 0.3 %芒廷维尤: 33.0 %芒廷维尤: 33.0 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.5 %苏州: 0.5 %茂名: 0.5 %茂名: 0.5 %衡水: 0.8 %衡水: 0.8 %衢州: 0.8 %衢州: 0.8 %西宁: 16.6 %西宁: 16.6 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.6 %运城: 1.6 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.5 %郑州: 0.5 %鄂州: 1.1 %鄂州: 1.1 %重庆: 0.3 %重庆: 0.3 %金华: 0.3 %金华: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 0.3 %长沙: 0.3 %阳泉: 0.5 %阳泉: 0.5 %龙岩: 0.5 %龙岩: 0.5 %其他其他China[]上海东莞临汾乌鲁木齐云浮佛山信阳北京南昌厦门台州合肥吉安哈尔滨唐山嘉兴天津太原常德广州延安张家口徐州成都无锡昆明晋城朝阳杭州桂林武汉沈阳沧州济南济源湖州漯河石家庄福州芒廷维尤芝加哥苏州茂名衡水衢州西宁西安贵阳运城遵义邯郸郑州鄂州重庆金华长春长沙阳泉龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(5) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return