Citation: | ZHANG Jianqiao, WANG Lei, LIU Wenjie, YANG Lei, JIN Wenbiao. SUSTAINABLE ACTIVATION OF PERACETIC ACID WITH MoS2 FOR DEGRADATION OF ACIDIC ORANGE 7[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 135-143. doi: 10.13205/j.hjgc.202402016 |
[1] |
张鹏,徐瑞霞,刘舒怡,等.MOFs衍生CuO/ZnO催化剂的制备及其光催化性能的研究[J].环境工程,2022,40(4):35-42.
|
[2] |
LIN J,ZOU J,CAI H,et al.Hydroxylamine enhanced Fe(Ⅱ)-activated peracetic acid process for diclofenac degradation:efficiency,mechanism and effects of various parameters[J].Water Research,2021,207:117796.
|
[3] |
王静晓,朱柯安,陈飞.氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J].环境科学研究,2021,34(12):2850-2858.
|
[4] |
ZHANG P,ZHANG X,ZHAO X,et al.Activation of peracetic acid with zero-valent iron for tetracycline abatement:the role of Fe(Ⅱ) complexation with tetracycline[J].Journal of Hazardous Materials,2022,424:127653.
|
[5] |
DAI C,LI S,DUAN Y,et al.Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole:implications for groundwater remediation[J].Water Research,2022,216:118347.
|
[6] |
吴兆翔.紫外/过氧乙酸(UV/PAA)体系降解典型β受体阻滞剂研究[D].武汉:华中科技大学,2020.
|
[7] |
田丹,吴玮,沈芷璇,等.Co(Ⅱ)活化过氧乙酸降解有机染料研究[J].环境科学学报,2018,38(10):4023-4031.
|
[8] |
武利园,郭朋朋,李海燕,等.MoS2催化活化单过硫酸盐降解有机污染物研究现状[J].复合材料学报,2021,38(5):1348-1357.
|
[9] |
WANG Z,MI B.Environmental applications of 2D molybdenum disulfide (MoS2) Nanosheets[J].Environmental Science & Technology,2017,51(15):8229-8244.
|
[10] |
ZHOU H,LAI L,WAN Y,et al.Molybdenum disulfide (MoS2):a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J].Chemical Engineering Journal,2020,384:123264.
|
[11] |
DU M,YI Q,JI J,et al.Sustainable activation of peroxymonosulfate by the Mo(Ⅳ) in MoS2 for the remediation of aromatic organic pollutants[J].Chinese Chemical Letters,2020,31(10):2803-2808.
|
[12] |
AO X W,ELORANTA J,HUANG C H,et al.Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water:a review[J].Water Research,2021,188:116479.
|
[13] |
KIM J,ZHANG T,LIU W,et al.Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J].Environmental Science & Technology,2019,53(22):13312-13322.
|
[14] |
CHI H,HE X,ZHANG J,et al.Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition:efficiency,mechanisms and pathway[J].Chemical Engineering Journal,2019,361:764-772.
|
[15] |
刘晓娜,黄韬博,陈龙,等.自组装超分子前驱体制备管状氮化碳及模拟太阳光光催化降解水中双氯芬酸[J].环境科学研究,2021,34(12):2831-2840.
|
[16] |
HE M,LI W,XIE Z,et al.Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation:enhancement mechanism and strategy for extending applicability[J].Water Research,2022,222:118887.
|
[17] |
KIM J,DU P,LIU W,et al.Cobalt/peracetic acid:advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J].Environmental Science & Technology,2020,54(8):5268-5278.
|
[18] |
CAI M,SUN P,ZHANG L,et al.UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J].Environmental Science & Technology,2017,51(24):14217-14224.
|
[19] |
HUIE R E,NETA P.Rate constants for one-electron oxidation by methylperoxyl radicals in aqueous solutions[J].International Journal of Chemical Kinetics,1986,18(10):1185-1191.
|
[20] |
王诗生,赵大唯,章慧娟,等.磁性氮掺杂碳材料活化过硫酸盐降解酸性橙7[J].环境科学学报,2022,42(5):237-246.
|
[21] |
SUN Z,LI S,DING H,et al.Electrochemical/Fe3+/peroxymonosulfate system for the degradation of Acid Orange 7 adsorbed on activated carbon fiber cathode[J].Chemosphere,2020,241:125125.
|
[22] |
姜希望.改性氮化碳光催化活化过硫酸盐降解酸性橙7的研究[D].武汉:武汉纺织大学,2017.
|
[23] |
张古承,张静,万子谦,等.铁锰双金属氧化物对过硫酸氢钾降解酸性橙7的催化效果[J].环境科学研究,2015,28(12):1902-1907.
|
[24] |
WANG J,WANG Z,CHENG Y,et al.Molybdenum disulfide (MoS2) promoted sulfamethoxazole degradation in the Fe(Ⅲ)/peracetic acid process[J].Separation and Purification Technology,2022,281:119854.
|
[25] |
滕晓宇,郑云松,蔡其正,等.沉积物活化氧气和过氧化氢产生羟自由基降解三氯乙烯的比较研究[J].环境科学研究,2022,35(2):547-555.
|
[26] |
颉亚玮,徐冉云,丁伟,等.含氯离子苯酚废水高级氧化过程AOX生成研究[J].环境工程,2022,40(5):1-8.
|
[27] |
WANG J,WANG Z,CHENG Y,et al.Molybdenum disulfide (MoS2):a novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J].Water Research,2021,201:117291.
|
[28] |
宋江燕,李方鸿,吴根义,等.氯咪巴唑在臭氧降解过程中的影响因素及其降解产物[J].环境科学研究,2022,35(2):478-487.
|
[1] | HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023 |
[2] | CHEN Yilin, XIN Wencai, CHEN Meng, CHEN Shi, FU Weiliang, ZHANG Chengzhen, ZHANG Xukun, XING Pu. RESEARCH PROGRESS OF SLUDGE TRANSPORTATION THROUGH PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 248-252. doi: DOI:10.13205/j.hjgc.202207034 |
[3] | CHE Kai, HAN Zhongge, YU Jinxing, CHEN Chongming, LIU Songtao, GU Xingjia. EXPERIMENTAL STUDY ON MICROWAVE DESORPTION OF SOIL CONTAMINATED BY INSULATING OIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 127-131,138. doi: 10.13205/j.hjgc.202202020 |
[4] | LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027 |
[5] | CHE Kai, YU Jinxing, LIU Kecheng, YANG Peng, FAN Hui, WEI Minglei, NIU Xiangnan, HOU Haiping. COMPARATIVE STUDY OF DIFFERENT TOXICITY EVALUATION MODELS ON HEALTH RISK ASSESSMENT OF PAHS IN SOIL OF TYPICAL SUBSTATION SITES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 128-134. doi: 10.13205/j.hjgc.202201019 |
[6] | NIU Zhenru, LI Feifei, ZHANG Youjun, QU Weigui, CONG Hui, LIU Shigang, ZHANG Jia. SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 94-101,228. doi: 10.13205/j.hjgc.202203015 |
[7] | LI Huaxiang, ZHAO Xiujun, LIU Yinghua, LUO Zhiji. SPATIAL DISTRIBUTION AND RISK ASSESSMENT OF TUNGSTEN POLLUTION OF SOIL IN A SMELTING SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 141-147. doi: 10.13205/j.hjgc.202201021 |
[8] | LI Sheng-hong, ZHU Fen-fen. COMPARISON AND CHARACTERISTICS OF BIOCHAR BY SLUDGE AND DEGREASING-SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 154-159,192. doi: 10.13205/j.hjgc.202109022 |
[9] | LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026 |
[10] | WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025 |
[11] | ZHANG Hua, YANG Xue-feng, GU Chao-yang, SUN Zhi-chao, ZHAO Guang-jun, XUE Fang-qin. RESEARCH AND AN ENGINEERING DEMONSTRATION OF SLUDGE DEWATERING TECHNOLOGY FOR DYEING INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 152-156. doi: 10.13205/j.hjgc.202011025 |
[12] | LI Qiang, GAO Cun-fu, CAO Ying, HE Lian-sheng, LIU Xiao-xue. COMPARISON AND VERIFICATION OF HEXAVALENT CHROMIUM DETECTION METHODS IN SOLID SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 47-51. doi: 10.13205/j.hjgc.202006008 |
[13] | XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010 |
[14] | LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012 |
[15] | YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003 |
[17] | Liu Xiao'er. POLLUTION AND ENVIRONMENTAL QUALITY EVALUATION FOR SOIL IN THE OIL PRODUCTION ZONES OF AN OIL FIELD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 126-129. doi: 10.13205/j.hjgc.201502028 |
[18] | Li Yanni Luo Zhaohui Liu Shan Li Jie Huang Jingjing, . GROUNDWATER POLLUTION RISK ASSESSMENT ON ASH FIELD IN GUIZHOU: TAKING THE YIJIAZHAI ASH FIELD AS AN EXAMPLE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 120-122. doi: 10.13205/j.hjgc.201501028 |
[19] | Liu Zengjun, Xia Xu, Zhang Xu, Li Guanghe, Jiang Lin. STUDY OF REMEDIATION AND LONG-TERM EFFECT OF AGENTS ON CHROMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 160-163. doi: 10.13205/j.hjgc.201502036 |
[20] | Zhao Ligang, Pu Shengyan, Yang Jinyan, Yu Jing, Wang Youle. THE Cr( VI) POLLUTION CHARACTERISTICS OF GROUNDWATER AND SOIL IN THE SURROUNDINGS OF A CHROMIUM SLAG SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 117-121. doi: 10.13205/j.hjgc.201502026 |
1. | 宋海旺,李子浩,秦显祥,周琳,程丽华,毕学军. 紫外/次氯酸钠预处理对超滤膜污染的影响. 青岛理工大学学报. 2023(06): 123-130 . ![]() | |
2. | 周琳,李子浩,李沛卓,杨强,高爱丽,程丽华,毕学军. UV-NaClO顺序消毒对污水中大肠菌群的灭活效果. 环境工程学报. 2022(10): 3213-3220 . ![]() |