Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CAO Bofeng, LIU Zixin, WEI Cuiyu, TANG Yufei, SHI Yucui, JIANG Pingping. EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 175-181. doi: 10.13205/j.hjgc.202402021
Citation: CAO Bofeng, LIU Zixin, WEI Cuiyu, TANG Yufei, SHI Yucui, JIANG Pingping. EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 175-181. doi: 10.13205/j.hjgc.202402021

EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ

doi: 10.13205/j.hjgc.202402021
  • Received Date: 2022-12-23
    Available Online: 2024-04-28
  • To investigate the response mechanism of root secretions of Leersia hexandra Swartz to Cr(Ⅵ) and identify the key microorganisms in Cr(Ⅵ) reduction, in this study, the types and contents of organic matters secreted by the roots of L. hexandra in an artificial wetland-microbial fuel cell(CW-MFC) system were studied at six Cr(Ⅵ) treatment levels(0, 40, 60, 80, 100, 120 mg/L). Soil microorganisms in the system were measured simultaneously at the control and optimal chromium treatment concentrations. The results showed that: 1) the effect of chromium stress on the root secretion of L. hexandra showed an increasing trend followed by a decreasing trend during the increase of chromium concentration, with the highest quantity of compounds in the root secretion at a hexavalent chromium treatment concentration of 80 mg/L; 2) the roots of L. hexandra were mainly lipids, alkanes, phenols, alkenes, and alcohols, of which alkanes were the most abundant; 3) hexavalent chromium stress significantly increased the enrichment of Geobacter in the CW-MFC system, which may be the key microorganism associated with chromium reduction and enrichment in L. hexandra.
  • [1]
    LI M,ZHOU S.α-Fe2O3/polyaniline nanocomposites as an effective catalyst for improving the electrochemical performance of microbial fuel cell[J].Chemical Engineering Journal,2018,339:539-546.
    [2]
    LI M,ZHOU S,XU Y,et al.Simultaneous Cr(Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J].Chemical Engineering Journal,2018,334:1621-1629.
    [3]
    石玉翠,罗昕怡,唐刚,等.人工湿地-微生物燃料电池耦合系统的研究进展及展望[J].环境工程,2021,39(8):25-33.
    [4]
    王丽,李雪,王琳,等.湿地型生物燃料电池(CW-MFC)研究进展[J].环境工程,2018,36(4):72-77.
    [5]
    LIU S,LU F,QIU D,et al.Wetland plants selection and electrode optimization for constructed wetland-microbial fuel cell treatment of Cr(Ⅵ)-containing wastewater[J].Journal of Water Process Engineering,2022,49:103040.
    [6]
    余关龙,付永江,彭海渊,等.水平潜流人工湿地对水中Cd2+、Zn2+及营养物的去除[J].环境工程,2019,37(10):116-120.
    [7]
    覃辉,林华,丁娜,等.重金属Ni、Cr复合污染下李氏禾的根际环境特征[J].环境工程,2022,40(5):109-116.
    [8]
    张建聪,王克勤,赵洋毅,等.磷胁迫对高原湿地植物伞莎草根系分泌物的影响[J].环境科学与技术,2019,42(2):17-24.
    [9]
    满向甜.根际环境对蜡状芽孢杆菌与李氏禾交互作用净化水体Cr(Ⅵ)的影响研究[D].桂宁:桂林理工大学,2019.
    [10]
    MENG P,PEI H,HU W,et al.How to increase microbial degradation in constructed wetlands:influencing factors and improvement measures[J].Bioresource Technology,2014,157:316-326.
    [11]
    LIN H,LIU C,LI B,et al.Trifolium repens L.regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms[J].Journal of Hazardous Materials,2021,402:123829.
    [12]
    ZHANG X H,LIU J,HUANG H T,et al.Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz[J].Chemosphere,2007,67(6):1138-1143.
    [13]
    LIU J,DUAN C Q,ZHANG X H,et al.Characteristics of chromium(Ⅲ) uptake in hyperaccumulator Leersia hexandra Swartz[J].Environmental and Experimental Botany,2011,74:122-126.
    [14]
    LI J,LIN Q,ZHANG X,et al.Kinetic parameters and mechanisms of the batch biosorption of Cr(Ⅵ) and Cr(Ⅲ) onto Leersia hexandra Swartz biomass[J].Journal of Colloid and Interface Science,2009,333(1):71-77.
    [15]
    SHI Y,TANG G,YOU S,et al.Effect of external aeration on Cr(Ⅵ) reduction in the Leersia hexandra Swartz constructed wetland-microbial fuel cell system[J/OL] 2023,13(5):10.3390/app13053309.
    [16]
    丁娜,林华,张学洪,等.植物根系分泌物与根际微生物交互作用机制研究进展[J].土壤通报,2022,53(5):1212-1219.
    [17]
    杜崇宣,刘云根,王妍,等.外源磷输入对高原湖滨湿地香蒲根系分泌物的影响[J].西部林业科学,2020,49(3):117-125

    ,146.
    [18]
    林华,林志毅,满向甜,等.蜡状芽孢杆菌协同李氏禾根系分泌物去除水体Cr6+的效应及机制[J].生态环境学报,2020,29(2):353-359.
    [19]
    罗晓蔓,周书宇,杨雪.植物根系分泌物的分类和作用[J].安徽农业科学,2019,47(4):37-39

    ,45.
    [20]
    王俊力,刘福兴,付子轼,等.不同收割时间下人工湿地芦苇根系分泌物的组成和特征[J].环境科学研究,2022,35(3):796-805.
    [21]
    叶思诚.油茶适应低磷胁迫的根系生理响应[D].长沙:中南林业科技大学,2013.
    [22]
    WANG J,SONG X,WANG Y,et al.Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell[J].Bioresource Technology,2016,221:697-702.
    [23]
    刘沙沙,付建平,蔡信德,等.重金属污染对土壤微生物生态特征的影响研究进展[J].生态环境学报,2018,27(6):1173-1178.
    [24]
    LIANG J L,HUANG X M,YAN J W,et al.A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J].Science of the Total Environment,2021,774:145762.
    [25]
    CHEN Y,JIANG Y,HUANG H,et al.Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments[J].Science of the Total Environment,2018,637/638:1400-1412.
    [26]
    JANSSEN P H.Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J].(0099-2240 (Print)).
    [27]
    KIM J R,JUNG S H,REGAN J M,et al.Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J].Bioresource Technology,2007,98(13):2568-2577.
    [28]
    GEORGIEVA T,EVSTATIEVA Y,SAVOV V,et al.Assessment of plant growth promoting activities of five rhizospheric Pseudomonas strains[J].Biocatalysis and Agricultural Biotechnology,2018,16:285-292.
    [29]
    JIANG D,LI B,JIA W,et al.Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells[J].Applied Biochemistry and Biotechnology,2009,160(1):182.
  • Relative Articles

    [1]WANG Yan, WANG Jie, XIE Zijian, LI Chunhua, YE Chun, MIAO Kexin, WEI Weiwei, ZHENG Ye. NON-POINT SOURCE POLLUTIONS IN TYPICAL RIVER BASINS IN HILLY AND MOUNTAINOUS AREAS AND PLAIN RIVER NETWORK AREA IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 33-40. doi: 10.13205/j.hjgc.202410005
    [2]ZHAO Chen, LI Chen, HU Qian, QI Fei, SUN Dezhi. REVIEW OF URBAN NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGIES AND OPTIMIZATION STRATEGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 11-20,75. doi: 10.13205/j.hjgc.202312002
    [3]DONG Yihua, ZHANG Xueying, ZHANG Xinyue, LI Liang. EVALUATION OF FARMLAND NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGY IN LIAOHE RIVER BASIN BASED ON AHP-FCE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 150-157. doi: 10.13205/j.hjgc.202312018
    [4]ZHANG Xiuhong, LI Renge, ZHAO Yueshuai, GAO Linting, NING Bo. ANALYSIS OF DIFFUSE POLLUTION CHARACTERISTICS IN AGRICULTURAL SPACE IN XI'AN BASED ON DPeRS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 142-149. doi: 10.13205/j.hjgc.202312017
    [5]MA Qiuxia, PANG Yong, ZHANG Pengcheng. FLUME EXPERIMENT STUDY ON MANNING COEFFICIENT,A KEY PARAMETER OF WATER ENVIRONMENT MODEL OF THE TAIHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 280-285. doi: 10.13205/j.hjgc.202206035
    [6]WANG Xuelian, LIU Bo, ZHAO Changsen, HUANG Zhenfang, PAN Xu. STUDY ON CALCULATION METHOD SYSTEM OF POLLUTANT LOAD FROM NON-POINT SOURCE INTO RIVERS IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 166-172,211. doi: 10.13205/j.hjgc.202203025
    [7]XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027
    [8]GAO Wei, CHEN Yan, YAN Changan, LIU Yong. SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 55-62. doi: 10.13205/j.hjgc.202206007
    [9]ZHANG Zhi-jie, WEN Fei, ZHANG Ya-qun, ZHOU Jing, FENG Ai-ping. CHARACTERISTICS AND SOURCE ANALYSIS OF NON-POINT SOURCE POLLUTION LOAD IN THE YELLOW RIVER BASIN ON A REGIONAL SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 81-88,142. doi: 10.13205/j.hjgc.202209011
    [10]YIN Jingchen, DING Han, LI Zeli, LI Xue, LI Guoguang, WANG Yuqiu. RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032
    [11]GU Xiao-dan, HUANG Yong, DING Yong-wei, HUANG Ji-hui. DIAGNOSIS AND ANALYSIS BASED ON MATHEMATICAL MODEL ON PROBLEMS IN SEWAGE TREATMENT PLANTS IN VILLAGES AND TOWNS WITH LOW LOAD OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 9-15. doi: 10.13205/j.hjgc.202105002
    [12]WU Jun, WANG Yi-yao, MA Yan. ANALYSIS ON RUNOFF COEFFICIENTS OF DIFFERENT IMPERVIOUS UNDERLYING SURFACES BASED ON A NOVEL RUNOFF COLLECTION METHOD FOR CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 47-52. doi: 10.13205/j.hjgc.202102008
    [13]GUO Min-peng, HOU Jing-ming, FU De-yu, KANG Yong-de, SHI Bao-shan, LI Chang-hao. HIGH PERFORMANCE NUMERICAL SIMULATION METHOD FOR NON-POINT SOURCE POLLUTION TRANSFER PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 160-166,173. doi: 10.13205/j.hjgc.202008027
    [14]ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
    [20]Xu Qingxian, Guan Xuefang, Qian Lei, Lin Bin, . RESEARCH ON NEW TECHNOLOGY INTERGRATION OF SWINE MANURE TREATMENT IN LARGE-SCALE SWINE FARM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 67-71. doi: 10.13205/j.hjgc.201501016
  • Cited by

    Periodical cited type(9)

    1. 邓刚. 福泉市道坪镇谷龙河治理项目工程设计分析. 江西建材. 2023(06): 134-136 .
    2. 王艳,焦燕,杨文柱,闫颖超,邬宏,灵灵,史月超. 内蒙古河套灌区农田非点源氮磷污染负荷估算. 中国环境科学. 2023(12): 6551-6560 .
    3. 杜鹃,王乐宜,周皓媛,王本梧,李国学,张宝莉. 农业面源污染时空分布及污染源解析——以安徽怀远县为例. 中国农业大学学报. 2021(02): 139-149 .
    4. 徐丹,韦群,王辉,丁鸣鸣,邵光成. 基于云模型的农业面源污染敏感性等级评价. 江苏农业科学. 2021(02): 180-186 .
    5. 罗娜,樊霆,郭彬,李凝玉,傅庆林,李华. 基于输出系数法的苕溪流域面源污染负荷估算. 合肥学院学报(综合版). 2021(02): 78-84 .
    6. 李政道,刘鸿雁,姜畅,顾小凤,涂宇. 基于输出系数模型的红枫湖保护区非点源污染负荷研究. 水土保持通报. 2020(02): 193-198+325 .
    7. 杨善莲,郑梦蕾,刘纯宇,马友华,王强. 农业面源污染模型研究进展. 环境监测管理与技术. 2020(03): 8-13 .
    8. 胡正,敖天其,李孟芮,胡富昶,刘凌雪. 改进的输出系数模型在缺资料地区面源综合评价. 灌溉排水学报. 2019(02): 108-114 .
    9. 黄国如,陈晓丽,任秀文. 北江飞来峡库区典型流域非点源污染特征分析及模拟. 水资源保护. 2019(04): 9-16+62 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 74.4 %META: 74.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 35.8 %其他: 35.8 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %北京: 4.2 %北京: 4.2 %南京: 5.0 %南京: 5.0 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %天津: 3.3 %天津: 3.3 %宣城: 1.7 %宣城: 1.7 %宿州: 0.8 %宿州: 0.8 %张家口: 2.5 %张家口: 2.5 %成都: 3.3 %成都: 3.3 %昆明: 0.8 %昆明: 0.8 %杭州: 2.5 %杭州: 2.5 %沈阳: 2.5 %沈阳: 2.5 %温州: 0.8 %温州: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 0.8 %漯河: 0.8 %澳门: 0.8 %澳门: 0.8 %芒廷维尤: 12.5 %芒廷维尤: 12.5 %芝加哥: 2.5 %芝加哥: 2.5 %蚌埠: 1.7 %蚌埠: 1.7 %衡阳: 0.8 %衡阳: 0.8 %衢州: 0.8 %衢州: 0.8 %运城: 3.3 %运城: 3.3 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 6.7 %重庆: 6.7 %鞍山: 0.8 %鞍山: 0.8 %其他上海东莞北京南京台州合肥天津宣城宿州张家口成都昆明杭州沈阳温州湖州漯河澳门芒廷维尤芝加哥蚌埠衡阳衢州运城邯郸郑州重庆鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(4) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return