Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZOU Xin, LONG Jisheng, HUANG Yiru, JIAO Xuejun. ENLIGHTENMENTS OF ENERGY EFFICIENCY EVALUATION SYSTEM OF WASTE-TO-ENERGY PLANTS IN EU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 220-229. doi: 10.13205/j.hjgc.202402026
Citation: HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023

ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL

doi: 10.13205/j.hjgc.202402023
  • Received Date: 2021-05-28
    Available Online: 2024-04-28
  • Microbial reduction of Cr(Ⅵ) to Cr(Ⅲ) is a promising method for remediation of chromium-contaminated soil. Molecular biology was used to identify the species of the strain, and the in situ remediation effect of hexavalent chromium was evaluated through laboratory tests and physical simulation experiments. The results showed that the 16S rDNA full-length sequence of the isolated strain capable of reducing Cr(Ⅵ) was analyzed in Ezbiocloud data, and the similarity was 98.89% with Desulfovibrio desulfuricans DSM 642T, named D. desulfuricans S-7. The most suitable growth temperature for D. desulfuricans S-7 was 30 ℃, while the most suitable pH was 7.0, and the suitable NaCl concentration was 0 to 10%. The results showed that the removal rate of 25 mg/L Cr(Ⅵ) was 79.74%, and the growth and reproduction of the strain was inhibited under an initial 100 mg/L of Cr(Ⅵ). The simulation experiment results revealed Cr(Ⅵ) concentration in the soil changed from 50.0 mg/kg to 3.1 mg/kg, and its removal rate reached 93.8%, while the remediated soil could meet China's national standard, GB 36600—2018, for Class 1 development land. This study showed that D. Desulfurians S-7 can effectively remediate Cr(Ⅵ) contaminated soil in anaerobic environment, providing a new alternative for in-situ remediation of deep-layer Cr(Ⅵ) contaminated soil.
  • [1]
    陈卫平,杨阳,谢天,等.中国农田土壤重金属污染防治挑战与对策[J].土壤学报,2018,55(2):261-272.
    [2]
    王兴润,李磊,颜湘华,等.铬污染场地修复技术进展[J].环境工程,2020,38(6):1-8

    ,23.
    [3]
    邓红艳,陈刚才.铬污染土壤的微生物修复技术研究进展[J].地球与环境,2012,40(3):466-472.
    [4]
    杨文晓,张丽,毕学,等.六价铬污染场地土壤稳定化修复材料研究进展[J].环境工程,2020,38(6):16-23.
    [5]
    张莹,章莹颖,唐杰,等.微小杆菌Exiguobacterium sp.MH3 对六价铬的还原特性[J].应用与环境生物学报,2014,20(5):791-797.
    [6]
    MA Z,ZHU W,LONG H,et al.Chromate reduction by resting cells of Achromobacter sp.Ch-1 under aerobic conditions[J].Process Biochemistry,2007,42(6):1028-1032.
    [7]
    THACKER U,PARIKH R,SHOUCHE Y,et al.Reduction of chromate by cell-free extract of Brucella sp.isolated from Cr(Ⅵ) contaminated sites[J].Bioresource Technology,2007,98(8):1541-1547.
    [8]
    王雯璇,陈晓彤,章雨晨,等.微生物作用下土壤中水溶态Cr(Ⅵ)的迁移转化[J].环境工程,2020,38(6):40-46.
    [9]
    FRANCISCO R,ALPOIM M C,MORALS P V.Diversity of chromium-resistant and-reducing bacteria in a chromium-contaminated activated sludge[J].Journal of Applied Microbiology,2002,92(5):837-843.
    [10]
    ⅥERA M,CURUTCHET G,DONATI E.A combined bacterial process for the reduction and immobilization of chromium[J].International Biodeterioration and Biodegradation,2003,52(1):31-33.
    [11]
    LONG D Y,MUHAMMAD Z H,SU X M,et al.Cr(Ⅵ) reduction by an extracellular polymeric substance (EPS) produced from a strain of Pseudochrobactrum saccharolyticum[J].3 Biotech,2019:111.
    [12]
    MAHMOUD S M,NAGWA I.EL-ARABI,et al.Reduction of chromium-Ⅵ by chromium-resistant Escherichia coli FACU:a prospective bacterium for bioremediation[J].Folia Microbiologica,2020,https://doi.org/10.1007/s12223-020-00771-y.
    [13]
    任军俊,肖利萍.硫酸盐还原菌处理废水的研究进展与展望[J].水资源与水工程学报,2009,20(2):52-56.
    [14]
    安文辉,马斯然,王磊峰.硫酸盐还原菌处理含铬废水的研究现状[J].广东化工,2012,17(39):97-98.
    [15]
    易正戟,谭凯旋,澹爱丽,等.硫酸盐还原菌及其在工业和矿山废水治理中的应用[J].云南师范大学学报,2006,26(3):39-45.
    [16]
    瞿建国,申如香,徐伯兴,等.硫酸盐还原菌还原Cr(Ⅵ)的初步研究[J].华东师范大学学报,2005,1:105-110.
    [17]
    吴淑杭,周德平,吕卫光,等.硫酸盐还原菌修复铬(Ⅵ)污染土壤研究[J].农业环境科学学报,2007,2:467-471.
    [18]
    杨志辉,吴瑞萍,王兵,等.铬污染土壤的微生物修复工艺及中试[J].环境化学,2013,32(9):1758-1765.
    [19]
    李新荣,沈德中.硫酸盐还原菌的生态特性及其应用[J].应用与环境生物学报,1999(增刊1):10-13.
    [20]
    穆军,张肇铭.一种分离纯化厌氧细菌的新方法一平皿夹层厌氧法[J].山西大学学报(自然科学版),1998,21(4):363-367.
    [21]
    王明义,梁小兵,郑娅萍,等.硫酸盐还原菌鉴定和检测方法的研究进展[J].微生物学杂志,2005,25(6):81-84.
    [22]
    中国环境监测总站.水质硫酸盐的测定铬酸钡分光光度法:HJ/T 342—2007[S].北京:中国环境科学出版社,2007.
    [23]
    US EPA.Method 3060A Alkaline Digestion for Hexavalent Chromium[S].Washington DC:United States Environment Protection Agency,1996.
    [24]
    US EPA.Method 7196A Chromium,Hexavalent (Colorimetric)[S].Washington DC:United States Environment Protection Agency,1992.
    [25]
    梁宇.硫酸盐还原菌的生长因子的探讨[J].山西建筑,2010,30:199-200.
    [26]
    李想,张雪英,王婷,等.Desulfovibrio desulfuricans G20 生理特性及处理含铬(Ⅵ) 硫酸盐废水的研究[J].生物加工过程,2018,16(3):71-77.
    [27]
    王辉,戴友芝,刘川,等.混合硫酸盐还原菌代谢过程的影响因素[J].环境工程学报,2012,6(6):1795-800.
    [28]
    许雅玲,伍健东.pH值对硫酸盐还原菌颗粒污泥性能的影响[J].工业用水与废水,2010,41(1):32-35.
    [29]
    肖利萍,张镭,李月.硫酸盐还原菌及其在废水厌氧治理中的应用[J].水资源与水工程学报,2011,22(1):45-48.
    [30]
    郑家传,张建荣,刘希雯,等.污染场地六价铬的还原和微生物稳定化研究[J].环境科学,2014,35(10):3882-3887.
    [31]
    徐莲,孙纪全,吴晓磊,等.菌株Rhodococcus sp.Chr-9 和Exiguobacterium sp.Chr-43 的除铬(Ⅵ) 特性[J].应用与环境生物学报,2012,18(6):971-977.
    [32]
    秦利玲,王天贵.用细菌解毒水溶液中六价铬的实验研究[J].化学工程师,2010,24(10):37-41.
    [33]
    LAXMAN R S.Mores.Reduction of hexavalent chromium by Streptomyces griseus[J].Minerals Eng,2002,15(11):831-837.
    [34]
    常文越,陈晓东与王磊,土著微生物修复铬(Ⅵ)污染土壤的条件实验研究[J].环境保护科学,2007,139(1):42-44.
    [35]
    JEYASINGH J,PHILIP L.Bioremediation of chromium contaminated soil:optimization of operating parameters under laboratory conditions[J].Journal of hazardous materials,2005(1/2/3):118.
    [36]
    徐天生,欧杰,马晨晨.微生物还原Cr(Ⅵ)的机理研究进展[J].环境工程,2015,33(1):32-36.
    [37]
    KANMANI P,ARAVIND J,PRESTON D.Remediation of chromium contaminants using bacteria[J].Int J Environ Sci Technol,2011,9(1):183-193.
    [38]
    SARANG A,KRISHNAN C.Comparison of in vitro Cr(Ⅵ) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil[J].Bioresour Technol,2008,99(10):4130-4137.
    [39]
    李政红,张胜,张翠云,等.土壤铬(Ⅵ)污染硫酸盐还原菌修复试验研究[J].南水北调与水利科技,2010,8(6):63-65.
    [40]
    刘增俊,夏旭,张旭,等.铬污染土壤的药剂修复及其长期稳定性研究[J].环境工程,2015,33(2):160-163.
  • Relative Articles

    [1]WANG Haijian. Analysis on influence of environmental properties of rail transit construction waste and performance of recycled products[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 42-50. doi: 10.13205/j.hjgc.202501005
    [2]LONG Jisheng. RESEARCH ON INFLUENCE OF SWIRLING EXHAUST GAS RECIRCULATION ON FURNACE TEMPERATURE CONTROL AND NOx EMISSION IN A WASTE INCINERATION PLANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 183-189. doi: 10.13205/j.hjgc.202407020
    [3]ZHANG Zhuowei, WU Yinhu, ZHOU Jurong, LI Mengyang, ZHANG Ning, CHEN Zhuo, ZHENG Tian, HU Hongying. ANALYSIS OF RECYCLING APPLICATION AND RISK CONTROL OF BOTTLE WASHING WASTEWATER IN CHINESE BAIJIU INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 9-15. doi: 10.13205/j.hjgc.202401002
    [4]CHEN Jianjun, LONG Jisheng, CHEN Lin, BAI Li, LI Junhua. STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020
    [5]LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032
    [6]YAN Mengfan, LONG Jisheng. A COMPREHENSIVE EVALUATION METHOD OF WASTE INCINERATION POWER PLANT BASED ON DELPHI METHOD AND TOPSIS METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 229-234. doi: 10.13205/j.hjgc.202307031
    [7]CHEN Zhengrui, ZHANG Shi, YIN Linlin, ZHANG Jun, DONG Jiankai, JIN Tao, ZHOU Hong, QU Peng, FENG Jiazi, WANG Shutao. PROPERTIES OF ORGANIC MATTER IN ANAEROBIC FERMENTATION LEACHATE FROM A DOMESTIC WASTE INCINERATION POWER PLANT IN THE COLD REGION IN NORTHERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 97-102. doi: 10.13205/j.hjgc.202303013
    [8]MA Yi, ZHENG Ren-dong, ZHOU Zhi-hao, JIANG Jia-hao, WANG Guo-bin, YAN Mi. BOTTLENECK OF APPLICATION OF DISPOSAL TECHNOLOGIES FOR FLY ASH FROM MUNICIPAL SOLID WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 237-243. doi: 10.13205/j.hjgc.202205033
    [9]XU Ao, WU Yin-hu, CHEN Zhuo, CUI Qi, BAI Yu, LI Kui-xiao, SHI Yu-long, GAO Qiang, HU Hong-ying. MUNICIPAL WASTEWATER RECLAMATION IN BEIJING:STATE-OF-THE-ART AND FUTURE POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 1-6,47. doi: 10.13205/j.hjgc.202109001
    [10]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [11]LIU Tong-li, ZHAO Li-xin, MENG Hai-bo, YAO Zong-lu, ZHANG Xi-rui, HUO Li-li. RESEARCH AND OPTIMIZATION OF EVALUATION METHODS FOR STRAW ENERGY UTILIZATION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 195-200. doi: 10.13205/j.hjgc.202008032
    [12]ZHANG Wei-jie, LI Zheng-zheng, LI Fang-de, WANG Yan. RESEARCH ON HEATING MODE SELECTION IN NORTH CHINA COUNTY TOWNS BASED ON COMBINED HEAT AND POWER GENERATION BY GARBAGE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 118-123. doi: 10.13205/j.hjgc.202012020
    [13]Xing Yiming, Li Mingshan Yang Jing Yang Lili Chen Yanzhi Chen Xi, . BEST AVAILABLE TECHNOLOGY FOR PRINTED CIRCUIT BOARDS CLEANER PRODUCTION AND POLLUTION ABATEMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 135-138?.
  • Cited by

    Periodical cited type(2)

    1. 王霂晗,宋绍伟,王慧贤,庄柯,林正根,徐莲莲. 某垃圾焚烧发电机组脱硝催化剂失活原因分析. 电力科技与环保. 2024(03): 321-328 .
    2. 龚雪,陈兴兆,杨晓斌,夏建军. 垃圾焚烧电厂能源系统特征及效率优化研究. 区域供热. 2024(05): 10-19 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.7 %FULLTEXT: 15.7 %META: 84.3 %META: 84.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.7 %其他: 25.7 %[]: 1.4 %[]: 1.4 %上海: 2.9 %上海: 2.9 %北京: 1.4 %北京: 1.4 %台州: 2.9 %台州: 2.9 %廊坊: 4.3 %廊坊: 4.3 %杭州: 1.4 %杭州: 1.4 %湖州: 2.9 %湖州: 2.9 %芒廷维尤: 38.6 %芒廷维尤: 38.6 %苏州: 1.4 %苏州: 1.4 %衡水: 1.4 %衡水: 1.4 %衢州: 2.9 %衢州: 2.9 %西宁: 8.6 %西宁: 8.6 %重庆: 1.4 %重庆: 1.4 %金华: 2.9 %金华: 2.9 %其他[]上海北京台州廊坊杭州湖州芒廷维尤苏州衡水衢州西宁重庆金华

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (154) PDF downloads(5) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return