Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 42 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHENG Haitao, LIU Jianguo, LUO Tao, CHENG Xueling, TAO Bangyi, LIU Cheng, HUANG Kan, SONG Xiaoquan, SHAO Shiyong, CAO Nianwen, XIANG Yan, ZHANG Tianshu, CHEN Bing, LIU Nana, JIN Xiang, LONG Wenrui, LIU Jiaxin, LI Qilong, MA Yubin, WU Lin, JIN Jiangbo, XU Manman, XU Ziqiang, WU Xiaoqing, BI Cuicui, LIU Qing, LI Junmin, HAN Chenghui, HAN Yong, QIN Fuqiang, ZHANG Chengxin, TAN Wei, WANG Bingbing, WANG Mian, CHENG Yin, LI Hao, WANG Guang, YUN Long. RESEARCH PROGRESS ON INTEGRATED THREE-DIMENSIONAL DETECTION TECHNOLOGY FOR ATMOSPHERIC POLLUTION IN COASTAL OCEAN BOUNDARY LAYER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 1-16. doi: 10.13205/j.hjgc.202403001
Citation: ZHENG Haitao, LIU Jianguo, LUO Tao, CHENG Xueling, TAO Bangyi, LIU Cheng, HUANG Kan, SONG Xiaoquan, SHAO Shiyong, CAO Nianwen, XIANG Yan, ZHANG Tianshu, CHEN Bing, LIU Nana, JIN Xiang, LONG Wenrui, LIU Jiaxin, LI Qilong, MA Yubin, WU Lin, JIN Jiangbo, XU Manman, XU Ziqiang, WU Xiaoqing, BI Cuicui, LIU Qing, LI Junmin, HAN Chenghui, HAN Yong, QIN Fuqiang, ZHANG Chengxin, TAN Wei, WANG Bingbing, WANG Mian, CHENG Yin, LI Hao, WANG Guang, YUN Long. RESEARCH PROGRESS ON INTEGRATED THREE-DIMENSIONAL DETECTION TECHNOLOGY FOR ATMOSPHERIC POLLUTION IN COASTAL OCEAN BOUNDARY LAYER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 1-16. doi: 10.13205/j.hjgc.202403001

RESEARCH PROGRESS ON INTEGRATED THREE-DIMENSIONAL DETECTION TECHNOLOGY FOR ATMOSPHERIC POLLUTION IN COASTAL OCEAN BOUNDARY LAYER

doi: 10.13205/j.hjgc.202403001
  • Received Date: 2023-11-30
    Available Online: 2024-05-31
  • The coastal ocean atmospheric boundary layer is a special area of land-sea-air interaction. The three-dimensional detection technology of atmospheric pollution in the coastal ocean boundary layer is developed to obtain high-precision vertical distribution information of main pollution components and key meteorological parameters in the coastal ocean atmospheric boundary layer. It has great significance to improve the understanding of pollution sources, chemical mechanisms, and transport processes in land, ocean, and atmosphere, and to improve the accuracy of atmospheric environment and meteorological forecasting in coastal areas. To develop a reliable comprehensive three-dimensional detection technology system for the coastal ocean atmospheric boundary layer, the recent progress of the national key research and development project is summarized. The developments of coastal ocean atmospheric detection techniques and instruments, as well as the research on the formation mechanism of atmospheric pollution in the observation areas are presented. A series of coastal ocean boundary layer detection technologies have been developed, including marine atmospheric profile lidar, turbulence exchange measurement, air-sea flux, and marine aerosol detection equipment, to solve the technical bottlenecks caused by harsh environmental conditions in coastal marine areas. Up to now, several coastal ocean air pollution observation research campaigns have been carried out with the developed equipment and technologies. A comprehensive three-dimensional detection technology system for the coastal ocean atmospheric boundary layer will play a positive supporting role in the prevention and control of air pollution in the eastern coastal areas of China.
  • loading
  • [1]
    HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222.
    [2]
    LI S, MA Z, XIONG X, et al. Satellite and ground observations of severe air pollution episodes in the winter of 2013 in Beijing, China[J]. Aerosol and Air Quality Research, 2016, 16(4):977-989.
    [3]
    刘文清, 谢品华, 刘建国, 等. 大气污染立体监测技术及应用[J]. 现代科学仪器, 2014(4):5-12.
    [4]
    刘文清, 陈臻懿,刘建国, 等. 区域大气环境污染光学探测技术进展[J]. 环境科学研究, 2019, 32(10):1645-1650.
    [5]
    KONG L W, HU M, TAN Q W, et al. Aerosol optical properties under different pollution levels in the Pearl River Delta (PRD) region of China[J]. Journal of Environmental Sciences, 2020, 87:49-59.
    [6]
    JI X G, LIU C, XIE Z Q, et al. Comparison of mixing layer height inversion algorithms using lidar and a pollution case study in Baoding, China[J]. Journal of Environmental Sciences, 2019, 79:81-90.
    [7]
    MA T, DUAN F K, HE K B, et al. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014-2016[J]. Journal of Environmental Sciences, 2019, 83:8-20.
    [8]
    ZHENG H T, LIU J G, TANG X, et al. Improvement of the real-time PM2.5 forecast over the Beijing-Tianjin-Hebei Region using an optimal interpolation data assimilation method[J]. Aerosol and Air Quality Research, 2018, 18(5):1305-1316.
    [9]
    HU F P, GUO Y M. Health impacts of air pollution in China[J]. Frontiers of Environmental Science & Engineering, 2021, 15(4):59-76.
    [10]
    KONG L, TANG X, ZHU J, et al. A 6-year-long (2013-2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC[J]. Earth System Science Data, 2021, 13(2):529-570.
    [11]
    NORTHCOTT D, SEVADJIAN J, SANCHO-GALLEGOS D A,et al.Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters[J].PLoS ONE, 2019, 14(3).DOI: 10.1371/journal.pone.0214403.
    [12]
    HAN S Q, CAI Z Y, LIU J L, et al. Comparison on aerosol physicochemical properties of sea and land along the coast of Bohai, China[J]. Science of the Total Environment, 2019, 673:148-156.
    [13]
    ZHENG H, SUN Y, LUO T, et al. Advances in coastal ocean boundary layer detection technology and equipment in China[J]. Journal of Environmental Sciences, 2023, 123:156-168.
    [14]
    WANG X, XIANG Y, LIU W,et al.Characteristics and Source Apportionment of the Vertical Distribution of Ozone at a Site of the Pearl River Delta Region of China[J].Earth and Space Science, 2021.DOI: 10.1029/2020EA001578.
    [15]
    WANG X, ZHANG T, XIANG Y, et al. Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network[J]. Science of The Total Environment, 2020, 751:141740.
    [16]
    宋小全, 王芳涵, 尹嘉萍, 等. 多普勒测风激光雷达三波束反演方法与实验[J]. 中国海洋大学学报(自然科学版), 2020, 50(4):136-144.
    [17]
    宋小全, 龙文睿, 云龙, 等. 多普勒激光雷达多波束测风精度及获取率分析[J]. 光学学报, 2021, 41(10):1-8.
    [18]
    靳翔, 宋小全, 刘佳鑫, 等. 基于多普勒激光雷达的边界层内湍流参数估算[J]. 中国激光, 2021, 48(11):164-173.
    [19]
    刘佳鑫, 云龙, 邵士勇, 等. 深圳地区多普勒测风激光雷达的湍流观测[J]. 大气与环境光学学报, 2021, 16(5):383-391.
    [20]
    JIN X, SONG X Q, YANG Y W, et al. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model[J]. Opt Express, 2022, 30(8):13263-13277.
    [21]
    SHEN J, CHAO N W. Accurate inversion of tropospheric aerosol extinction coefficient profile by Mie-Raman lidar[J]. Optik, 2019, 184:153-164.
    [22]
    LIU N N, WENG N Q, LUO T, et al. Research on simulation of the background radiation of lidar; proceedings of the Symposium on Novel Optoelectronic Detection Technology and Applications, F, 2020[C].
    [23]
    CAO N W, YANG S P, CAO S J, et al. Accuracy calculation for lidar ratio and aerosol size distribution by dual-wavelength lidar[J]. Applied Physics A, 2019, 125(9).
    [24]
    崔立凯, 宋小全, 杨雅雯, 等. 基于统计回归方法的多普勒激光雷达反演颗粒物浓度研究[J]. 光子学报, 2021, 50(12):60-69.
    [25]
    SUN J L, FRENCH J R. Air-sea interactions in light of new understanding of air-land interactions[J]. Journal of the Atmospheric Sciences, 2016, 73(10):3931-3949.
    [26]
    GERBI G P, TROWBRIDGE J H, EDSON J B, et al. Measurements of momentum and heat transfer across the air-sea interface[J]. Journal of Physical Oceanography, 2008, 38(5):1054-1072.
    [27]
    SUN J L, MAHRT L, NAPPO C, et al. Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer[J]. Journal of the Atmospheric Sciences, 2015, 72(4):1484-1503.
    [28]
    SUN J L, LENSCHOW D H, LEMONE M A, et al. The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations[J]. Boundary-layer Meteorology, 2016, 160:83-111.
    [29]
    LI M, KAN R, HE Y,et al.Development of a Laser Gas Analyzer for Fast CO2 and H2O Flux Measurements Utilizing Derivative Absorption Spectroscopy at a 100 Hz Data Rate[J].Sensors, 2021(10).DOI: 10.3390/s21103392.
    [30]
    LI X, YUAN F, HU M,et al.Compact Open-Path Sensor for Fast Measurements of CO2 and H2O using Scanned-Wavelength Modulation Spectroscopy with 1f-Phase Method[J].Sensors (Basel, Switzerland), 2020, 20(7).DOI: 10.3390/s20071910.
    [31]
    李明星, 陈兵, 阮俊, 等. 近海大尺度区域二氧化碳的激光在线探测技术[J]. 光学精密工程, 2020, 28(7):1424-1432.
    [32]
    HU M, CHEN B, YAO L,et al.A Fiber-Integrated CRDS Sensor for In-Situ Measurement of Dissolved Carbon Dioxide in Seawater[J].Sensors (Basel, Switzerland), 2021, 21(19).DOI: 10.3390/s21196436.
    [33]
    YUAN F, HU M, HE Y, et al. Development of an in situ analysis system for methane dissolved in seawater based on cavity ringdown spectroscopy[J]. Review of Scientific Instruments, 2020, 91(8):083106.
    [34]
    SHEN L, CHENG Y, BAI X, et al. Vertical profile of aerosol number size distribution during a haze pollution episode in Hefei, China[J]. Science of the Total Environment, 2022:814.
    [35]
    ZHANG C X, LIU C, HU Q H, et al. Satellite UV-Vis spectroscopy:implications for air quality trends and their driving forces in China during 2005-2017[J]. Light:Science & Application, 2019, 8(6):998-1009.
    [36]
    SU W J, LIU C, CHAN K L, et al. An improved TROPOMI tropospheric HCHO retrieval over China[J]. Atmospheric Measurement Techniques, 2020, 13(11):6271-6292.
    [37]
    张文强, 刘诚, 郝楠, 等. O2-O2云反演算法及其在TROPOMI上的应用[J]. 遥感学报, 2020, 24(11):1363-1378.
    [38]
    夏丛紫, 刘诚, 蔡兆男, 等. 哨兵5号欧洲业务二氧化硫产品在中国的准确性评估[J]. 科学通报, 2020, 65(20):2106-2111.
    [39]
    TAN W, LIU C, WANG S S, et al. Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellites data[J]. Atmospheric Chemistry & Physics, 2018, 18(20pt.1):15387-15402.
    [40]
    李珍妮, 宋小全, 马秋杰, 等. 辽宁绥中地区海陆风的多普勒测风激光雷达观测与特征提取[J]. 海洋气象学报, 2019, 39(4):52-60.
    [41]
    刘娜娜, 罗涛, 韩亚娟, 等. 台风外围环流对沿海地区大气边界层结构的影响研究[J]. 光学学报, 2021, 41(19):35-44.
    [42]
    杨雅雯, 宋小全, 廉文超, 等. 2021年春季葫芦岛海陆风特征及对臭氧污染影响[J]. 光学学报, 2023, 43(12):214-233.
    [43]
    LIU N N, LUO T, HAN Y J, et al. Analysis of the atmospheric visibility influencing factors under sea-land breeze circulation[J]. Opt Express, 2022, 30(5):7356-7371.
    [44]
    LIU J, SONG X, LONG W, et al. Structure analysis of the sea breeze based on doppler lidar and its impact on pollutants[J]. Remote Sensing, 2022, 14(2):324.
    [45]
    MA Y B, CHENG X L, LI Q L, et al. Water vapor flux-profile relationship in the stable boundary layer over the sea surface[J]. Journal of Geophysical Research:Atmospheres, 2022, 127(16):e2022JD036708.
    [46]
    LI Q L, CHENG X L, ZENG X D, et al. Study of the air-sea momentum flux of the coastal marine boundary layer during typhoons[J]. Journal of Geophysical Research, D Atmospheres:JGR, 2022, 127(12):e2022JD036839.
    [47]
    SHAO S Y, QIN F Q, LIU Q, et al. Turbulent structure function analysis using wireless micro-thermometer[J]. IEEE Access, 2020, 8:123929-123937.
    [48]
    许满满, 邵士勇, 刘庆, 等. 复杂地形下海陆风对大气湍流的影响[J]. 光学学报, 2020, 40(12):8-15.
    [49]
    SHAO S Y, QIN F Q, XU M W, et al. Temporal and spatial variation of refractive index structure coefficient over South China Sea[J]. Results in Engineering, 2020, 9(1):8.
    [50]
    徐自强, 吴晓庆, 许满满, 等. 海洋上空折射率结构常数廓线估算[J]. 物理学报, 2021, 70(24):136-144.
    [51]
    XU M M, SHAO S Y, LIU Q, et al. Offshore atmospheric optical turbulence characteristics relevant to astronomy and atmospheric physics[M]. SPIE, 2022.
    [52]
    XU M M, SHAO S Y, WENG N Q, et al. Analysis of optical turbulence over the South China Sea using balloon-borne microthermal data and ERA5 data[J]. Remote Sensing, 2022, 14(17):4398.
    [53]
    XU M M, SHAO S Y, WENG N Q, et al. Atmospheric optical turbulence characteristics over the ocean relevant to astronomy and atmospheric physics[J]. Applied Sciences, 2021, 11(22):10548.
    [54]
    XU M M, SHAO S Y, WENG N Q, et al. Analysis of the optical turbulence model using meteorological data[J]. Remote Sensing, 2022, 14(13):3085.
    [55]
    XU M M, ZHOU L P, SHAO S Y, et al. Analyzing the effects of a basin on atmospheric environment relevant to optical turbulence[J]. Photonics, 2022, 9(4):235.
    [56]
    SHI Y J, WANG D F, HUO J T, et al. Vertically-resolved sources and secondary formation of fine particles:a high resolution tethered mega-balloon study over Shanghai[J]. Science of The Total Environment, 2022, 802:149681.
    [57]
    XU J, CHEN J, ZHAO N, et al. Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment[J]. Atmospheric Chemistry and Physics, 2020, 20(12):7259-7269.
    [58]
    WANG G C, CHEN J, XU J, et al. Atmospheric processing at the sea-land interface over the South China Sea:secondary aerosol formation, aerosol acidity, and role of sea salts[J]. Journal of Geophysical Research, D Atmospheres:JGR, 2022,127(5):2021JD036255.
    [59]
    WANG G C, TAO Y, CHEN J, et al. Quantitative Decomposition of influencing factors to aerosol pH variation over the coasts of the South China Sea, East China Sea, and Bohai Sea[J].Environmental Science & Technology Letters, 2022, 9(10):815-821.
    [60]
    WANG G C, HUANG K, FU Q Y, et al. Response of PM2.5-bound elemental species to emission variations and associated health risk assessment during the COVID-19 pandemic in a coastal megacity[J]. Journal of Environmental Sciences, 2022, (12):115-127.
    [61]
    LI H, QIN X F, WANG G C, et al. Conjoint impacts of continental outflows and marine sources on brown carbon in the East China Sea:abundances, optical properties, and formation processes[J]. Atmospheric Environment, 2022, 273(23):118959.
    [62]
    LI H, QIN X F, CHEN J, et al. Continuous measurement and molecular compositions of atmospheric water-soluble brown carbon in the nearshore marine boundary layer of Northern China:secondary formation and influencing factors[J]. Journal of Geophysical Research:Atmospheres, 2023, 128(12):e2023JD038565.
    [63]
    LIU C F, LI H, ZHENG H T, et al. Ocean emission pathway and secondary formation mechanism of aminiums over the Chinese Marginal Sea[J]. Journal of Geophysical Research:Atmospheres, 2022, 127(23):e2022JD037805.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return