Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 42 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HUANG Wenhui, GAO Jiaqi, LI Xiang, HUANG Yong, XU Peiling, YE Jiahong. EFFECT OF NITROGEN LOAD ON NOB INHIBITION IN PARTIAL NITROSATED ACTIVATED SLUDGE SYSTEM UNDER MAINSTREAM CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 25-32. doi: 10.13205/j.hjgc.202403003
Citation: HUANG Wenhui, GAO Jiaqi, LI Xiang, HUANG Yong, XU Peiling, YE Jiahong. EFFECT OF NITROGEN LOAD ON NOB INHIBITION IN PARTIAL NITROSATED ACTIVATED SLUDGE SYSTEM UNDER MAINSTREAM CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 25-32. doi: 10.13205/j.hjgc.202403003

EFFECT OF NITROGEN LOAD ON NOB INHIBITION IN PARTIAL NITROSATED ACTIVATED SLUDGE SYSTEM UNDER MAINSTREAM CONDITIONS

doi: 10.13205/j.hjgc.202403003
  • Received Date: 2023-01-04
    Available Online: 2024-05-31
  • Partial nitrification (PN) is an important way for anaerobic ammonium oxidation (ANAMMOX) to obtain nitrite (NO2--N) as a substrate. However, the concentration of ammonia nitrogen (NH4+-N) in municipal sewage is usually low and fluctuates frequently, making it difficult to achieve a stable PN. In this study, the two reactors were started by shortening the hydraulic retention time (HRT), and the changes in nitrogen transformation and microbial community structure in the PN system were compared under different nitrogen loads (NLR). The results showed that the NLR of R1 increased from 0.15 kg/(m3·d) to 0.5 kg/(m3·d), and the ammonia nitrogen conversion rate (ACR) increased from 45% to 65%, in a hypoxic environment, the nitrous nitrogen accumulation rate (NAR) increased from 0 to 95%, indicating that the rapid start-up of PN could be achieved, but PN became unstable after 60 days of stable operation. However, under the condition of high NLR [0.8~1.2 kg/(m3·d)], ACR and NAR could reach 68% and 85%, and could achieve stable operation, indicating that it was easier to obtain stable and effective NOB inhibition. The microbial community structure further showed that with the increase of NLR, the relative abundance of NOB in R2 was much lower than that in R1; at the same time, the dominant bacteria of NOB in R2 gradually changed from Nitrospira to Nitrolancea. It showed that under high load operation, the type of NOB bacteria changed. This provided a new method for solving the bottleneck problem of the application of the PN-Anammox process under mainstream conditions, which had important research significance and application value.
  • loading
  • [1]
    REGMI P, MIILLER M W, HOLGATE B, et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation[J]. Water Research, 2014,57:162-171.
    [2]
    CHRISTENSSON M, EKSTROM S, ANDERSSON C, et al. Experience from start-ups of the first ANITA Mox plants[J]. Water Science and Technology, 2013,67(12):2677-2684.
    [3]
    GILBERT E M, AGRAWAL S, SCHWARTZ T, et al. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures[J]. Water Research, 2015,81:92-100.
    [4]
    彭永臻,王锦程,李翔晨,等.氮负荷对短程反硝化耦合厌氧氨氧化生物膜系统脱氮性能的影响[J]. 北京工业大学学报, 2021,47(12):1367-1376.
    [5]
    GUO Q, SHI Z J, XU J L, et al. Inhibition of the partial nitritation by roxithromycin and Cu(Ⅱ)[J]. Bioresource Technology, 2016,214:253-258.
    [6]
    王晓明,王杰.进水氨氮负荷对污水处理中硝化作用的影响[J].净水技术,2017,36(12):90-93.
    [7]
    OCHOA J C,COLPRIN J,PALACIOS B, et al. Active heterotrophic and autotrophic biomass distribution between fixed and suspended systems in a hybrid biological reactor[J]. Water Science and Technology, 2002,46 (1/2):397-404.
    [8]
    JOSS A, DERLON N, CYPRIEN C, et al. Combined nitritation-anammox:advances in understanding process stability[J]. Environment Science and Technology, 2011,45(22):9735-9742.
    [9]
    GU X D, HUANG Y, HU Y T, et al. Inhibition of nitrite-oxidizing bacteria in automatic recycling PN/ANAMMOX under mainstream conditions[J]. Bioresource Technology, 2021,342:125935.
    [10]
    QIU S K, HU Y S, LIU R, et al. Start up of partial nitritation-anammox process using intermittently aerated sequencing batch reactor:performance and microbial community dynamics[J]. The Science of the Total Environment, 2019,647:1188-1198.
    [11]
    LI J L, ZHANG L, PENG Y Z, et al. NOB suppression in partial nitritation-anammox (PNA) process by discharging aged flocs:performance and microbial community dynamics[J]. Chemosphere, 2019,227:26-33.
    [12]
    APHA. Standard Methods for the Examination of Water and Wastewater[M]. 21st ed. Washington, DC. American Public Health Association, 2005.
    [13]
    LI X, HUANG Y, YUAN Y, et al. Startup and operating characteristics of an external air-lift reflux partial nitritation-ANAMMOX integrative reactor[J]. Bioresource Technology, 2017,238:657-665.
    [14]
    SU Y L, PENG Y Z, WANG J, et al. Rapid enrichment of anammox bacteria and transformation to partial denitrification/anammox with nitrification/denitrification sludge[J]. The Science of the Total Environment, 2022,856(Pt 1):158973.
    [15]
    LI X, YUAN Y, BI Z, et al. Effects of salinity on the denitrification efficiency and community structure of a combined partial nitritation-anaerobic ammonium oxidation process[J]. Bioresource Technology, 2017,249:550-556.
    [16]
    BLACKBURNE R, YUAN Z, KELLER J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater[J]. Water Research, 2008,42(8/9):2166-2176.
    [17]
    LIU G Q, WANG J M. Long-term low DO enriches and shifts nitrifier community in activated sludge[J]. Environment Science and Technology, 2013,47(10):5109-5117.
    [18]
    NIELSEN J L, NGUYEN H, MEYER R L, et al. Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing[J]. Microbiology, 2012,158(7):1818-1825.
    [19]
    高逸凡,邹婷,刘霄霄,等.水力停留时间对厌氧氨氧化工艺的影响[J].山东化工,2022,51(11):25-27.
    [20]
    HAN M, VLAEMINCK S E, AL-OMARI A, et al. Uncoupling the solids retention times of flocs and granules in mainstream deammonification:a screen as effective out-selection tool for nitrite oxidizing bacteria[J]. Bioresource Technology, 2016,221:195-204.
    [21]
    CAO S B, KOCH K, DU R, et al. Toward mainstream anammox by integrating sidestream treatment[J]. Environmental Science and Technology, 2022,56(15):10553-10556.
    [22]
    TANG C J, ZHENG P, WANG C H, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor[J]. Bioresource Technology, 2010,101(6):1762-1768.
    [23]
    苑宏英,赵鑫,王宏斌,等.氨氮负荷的变化对部分硝化的影响及部分亚硝化的快速启动[J].环境工程学报, 2021,15(8):2748-2758.
    [24]
    WANG Z Y, ZHENG M, XUE Y, et al. Free ammonia shock treatment eliminates nitrite-oxidizing bacterial activity for mainstream biofilm nitritation process[J]. Chemical Engineering Journal, 2020,393(2):124682.
    [25]
    WANG J X, LIANG J D, NING D Y, et al. A review of biomass immobilization in anammox and partial nitrification/anammox systems:advances, issues, and future perspectives[J]. The Science of the Total Environment, 2022,821:152792.
    [26]
    LAURENI M, WEISSBRODT D G, VILLEZ K, et al. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes[J]. Water Research, 2019,154:104-116.
    [27]
    AGRAWAL S, SEUNTJENS D, COCKER P, et al. Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights[J]. Current Opinion in Biotechnology, 2018,50:214-221.
    [28]
    PICULELL M, SUAREZ C, LI C, et al. The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness[J]. Water Research, 2016,104:292-302.
    [29]
    ZHU W, van TENDELOO M, ALLOUL A, et al. Towards mainstream partial nitritation/anammox in four seasons:feasibility of bioaugmentation with stored summer sludge for winter anammox assistance[J]. Bioresource Technology, 2022,347:126619.
    [30]
    SPIECK E, HARTWIG C, MCCORMACK I, et al. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge[J]. Environment Microbiology, 2006,8(3):405-415.
    [31]
    王朝朝,武新娟,朱书浩,等.低氨氮污水同步亚硝化、厌氧氨氧化耦合异养反硝化(SNAD)工艺启动:运行效能与微生物生态学特性[J]. 中国环境科学, 2023,43(5):2254-2263.
    [32]
    余轶鹏,张斌,逄超,等.低氮负荷对厌氧氨氧化工艺性能及微生物菌群的影响[J]. 工业用水与废水, 2019,50(6):16-21.
    [33]
    WANG D, HUANG K, HE X, et al. Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system[J]. The Science of the Total Environment, 2022,813:152519.
    [34]
    CAO Y S, van LOOSDRECHTMARKC M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment:status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017,101(4):1365-1383.
    [35]
    ZHENG M, LI S L, NI G F, et al. Critical factors facilitating candidatus nitrotoga to be prevalent nitrite-oxidizing bacteria in activated sludge[J]. Environment Science and Technology, 2020,54(23):15414-15423.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return