Citation: | HUANG Jiming, LIU Runqing, WU Sizhan, QIN Hangdao, CHEN Jing. PREPARATION AND CHARACTERIZATION OF DEFECTIVE Zr-BASED METAL-ORGANIC FRAMEWORKS AND THEIR ADSORPTION PROPERTIES FOR TETRACYCLINE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 33-40. doi: 10.13205/j.hjgc.202403004 |
[1] |
王丹, 隋倩, 赵文涛, 等. 中国地表水环境中药物和个人护理品的研究进展[J]. 科学通报, 2014, 59(9):743-751.
|
[2] |
WANG Z, KOIRALA B, HERNANDEZ Y, et al. A naturally inspired antibiotic to target multidrug-resistant pathogens[J]. Nature, 2022, 601(7894):606-611.
|
[3] |
ROJAS S, HORCAJADA P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chem Rev, 2020, 120(16):8378-8415.
|
[4] |
KANDIAH M, NILSEN MH, USSEGLIO S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chem Mater, 2010, 22(24):6632-6640.
|
[5] |
QIN M, SHI Y, LU D, et al. High-performance Hf/Ti-doped defective Zr-MOFs for cefoperazone adsorption:behavior and mechanisms[J]. Appl Surf Sci, 2022, 595:153494.
|
[6] |
李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8):41-45.
|
[7] |
WITEK-KROWIAK A, CHOJNACKA K, PODSTAWCZYK D, et al. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process[J]. Bioresour Technol, 2014, 160:150-160.
|
[8] |
CLARK C A, HECK K N, POWELL C D, et al. Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate[J]. ACS Sustainable Chem Eng, 2019, 7(7):6619-6628.
|
[9] |
SHEN L, LIANG S, WU W, et al. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(Ⅵ)[J]. Dalton Trans, 2013, 42(37):13649-13657.
|
[10] |
HE X, DENG F, SHEN T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks:engineering exploration and mechanism insight[J]. J Colloid Interface Sci, 2019, 539:223-234.
|
[11] |
SARKER M, SONG J Y, JHUNG S H. Carboxylic-acid-functionalized UiO-66-NH2:a promising adsorbent for both aqueous and non-aqueous-phase adsorptions[J]. Chem Eng J, 2018, 331:124-131.
|
[12] |
HUANG J, XUE P, WANG S, et al. Fabrication of zirconium-based metal-organic frameworks@tungsten trioxide (UiO-66-NH2@WO3) heterostructure on carbon cloth for efficient photocatalytic removal of tetracycline antibiotic under visible light[J]. J Colloid Interface Sci, 2022, 606:1509-1523.
|
[13] |
LIANG Q, CUI S, LIU C, et al. Construction of CdS@UiO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability[J]. J Colloid Interface Sci, 2018, 524:379-387.
|
[14] |
LU X, SHAO Y, GAO N, et al. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin[J]. Chemosphere, 2016, 161:400-411.
|
[15] |
LIANG X, CHI J, YANG Z. The influence of the functional group on activated carbon for acetone adsorption property by molecular simulation study[J]. Microporous Mesoporous Mater, 2018, 262:77-88.
|
[16] |
刘希, 张宇峰, 罗平. 改性花生壳对四环素类抗生素的吸附特性研究[J]. 环境污染与防治, 2013, 35(5):35-39
,44.
|
[17] |
KIM H G, CHOI K, LEE K, et al. Controlling the structural robustness of zirconium-based metal organic frameworks for efficient adsorption on tetracycline antibiotics[J]. Water, 2021, 13(13):1869.
|
[18] |
KANG J K, KIM Y G, LEE S C, et al. Artificial neural network and response surface methodology modeling for diclofenac removal by quaternized mesoporous silica SBA-15 in aqueous solutions[J]. Microporous Mesoporous Mater, 2021, 328:111497.
|
[19] |
DALVAND A, NABIZADEH R, REZA GANJALI M, et al. Modeling of reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles:optimization, reusability, kinetic and equilibrium studies[J]. J Magn Magn Mater, 2016, 404:179-189.
|
[20] |
YANG Y, LI X, GU Y, et al. Adsorption property of fluoride in water by metal organic framework:optimization of the process by response surface methodology technique[J]. Surf Interfaces, 2022, 28:101649.
|