Citation: | LI Xu, XUE Shuang, YU Yingtan, JIANG Caihong, LIU Qiang. RELEASE LAW OF TRIPLET STATES OF DISSOLVED ORGANIC MATTER DURING ICE MELTING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 41-50. doi: 10.13205/j.hjgc.202403005 |
[1] |
BRIMBLECOMBE P, CLEGG S L, DAVIES T D, et al.Observations of the preferential loss of major ions from melting snow and laboratory ice[J]. Water Research,1987,21(10):1279-1286.
|
[2] |
BRIMBLECOMBE P, CLEGG S L, DAVIES T D, et al. The loss of halide and sulphate ions from melting ice[J]. Water Research,1988,22(6):693-700.
|
[3] |
李宁. 溶解性有机质对羟基自由基氧化降解有机污染物的影响[D].大连:大连理工大学,2015.
|
[4] |
WANG J Q, WANG K, GUO Y C, et al. Photochemical degradation of nebivolol in different natural organic matter solutions under simulated sunlight irradiation:kinetics, mechanism and degradation pathway[J]. Water Research,2020,173(C):115524.
|
[5] |
CHEN Q C, MU Z, XU L, et al. Triplet-state organic matter in atmospheric aerosols:formation characteristics and potential effects on aerosol aging[J]. Atmospheric Environment,2021,252:118343.
|
[6] |
白凯,君珊,郑朔方,等.呼伦湖水体溶解性有机物荧光特征及来源分析[J/OL].环境工程技术学报:1-14[2023-01-18
].http://zz.xue1888.com/kcms/detail/11.5972.X.20220711.1651.006.html.
|
[7] |
何杰,朱学惠,魏彬,等.基于EEMs与UV-vis分析苏州汛期景观河道中DOM光谱特性与来源[J].环境科学,2021,42(4):1889-1900.
|
[8] |
周石磊,孙悦,张艺冉,等.周村水库四季变化过程中水体溶解性有机物的分布与光谱特征[J].环境科学学报,2019,39(10):3492-3502.
|
[9] |
ZHOU X, MOPPER K. Determination of photochemically produced hydroxyl radicals in seawater and freshwater[J]. Marine Chemistry,1990,30.
|
[10] |
COOPER W J, ZIKA R G, PETASNE R G, et al. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight[J]. Environmental Science & Technology,1988,22(4598):711-712.
|
[11] |
HOU Z C, FANG Q, LIU H Y, et al. Photolytic kinetics of pharmaceutically active compounds from upper to lower estuarine waters:roles of triplet-excited dissolved organic matter and halogen radicals[J]. Environmental Pollution,2021,276:116692.
|
[12] |
BRACCHINI L, LOISELLE S, DATTILO A M, et al. The spatial distribution of optical properties in the ultraviolet and visible in an aquatic ecosystem[J]. Photochemistry and photobiology,2004,80(1):139-149.
|
[13] |
ELISA DE L, MARCO M, VALTER M, et al. Photochemical production of organic matter triplet states in water samples from mountain lakes, located below or above the tree line[J]. Chemosphere,2012,88(10):1208-1213.
|
[14] |
陈彦彤,李旭东,陶冶,等.有机激发三重态参与的光化学反应研究进展[J].化工进展,2020,39(8):3344-3353.
|
[15] |
闫晓寒,韩璐,文威,等.辽河保护区水体溶解性有机质空间分布与来源解析[J].环境科学学报, 2021, 41(4):1419-1427.
|
[16] |
王杰琼. 近岸海水中溶解性有机质对有机微污染物光降解行为的影响[D].大连:大连理工大学,2019.
|
[17] |
郭忠禹. 海水溶解性有机质对磺胺氯哒嗪光降解的影响[D]. 大连:大连理工大学,2020.
|
[18] |
苏欣颖,王宇,程欣,等.哈尔滨市降雪中溶解性有机物光谱特性分析[J].环境化学,2021,40(1):312-320.
|
[19] |
陈静. 水体冻结-融化过程中溶解性有机物的变化[D].沈阳:辽宁大学,2015.
|
[20] |
XUE S, CHEN J, TIE M. Release of dissolved organic matter from melting ice[J]. Environmental Progress & Sustainable Energy,2016,35(5):1458-1467.
|
[21] |
WENK J, GRAF C, AESCHBACHER M, et al. Effect of solution pH on the dual role of dissolved organic matter in sensitized pollutant photooxidation[J]. Environmental Science & Technology, 2021,55(22):15110-15122.
|
[22] |
PEURAWORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta,1997,337(2):133-149.
|
[23] |
YANG C H, LIU Y Z, ZHU Y X,et al. Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy[J]. Marine Pollution Bulletin,2016,104(1/2):113-120.
|
[24] |
刘纪阳,薛爽,张营,等.水相和冰相中不同pH条件下溶解性有机质对苊光降解的影响[J].环境科学学报,2021,41(5):1930-1939.
|
[25] |
CHEN M L, MAIE N, PARISH K, et al. Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland[J]. Biogeochemistry, 2013, 115(1):167-183.
|
[26] |
DIANE M M, ELIZABETH W B, PAUL K W, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography,2001,46(1). DOI: 10.4319/L0.2001.46.1.0038.
|
[27] |
JUSTIN E B, ANNETTE S E. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry,2009,41(3):270-280.
|
[28] |
孟永霞,程艳,李琳,等.新疆匹里青河小流域DOM荧光特征及与汞的相互作用[J].生态与农村环境学报,2020,36(6):770-777.
|
[29] |
JAFFÉ R, BOYER J N, LU X,et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry,2003,84(3/4):195-210.
|
[30] |
ZHANG Y, ZHANG E, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659.
|
[31] |
CHEN W,WESTERHOFF P,LEENHEER J A,et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
|
[32] |
WU F C, TANOUE E, LIU C Q. Fluorescence and amino acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa[J]. Biogeochemistry,2003,65(2):245-257.
|
[33] |
NIETO-CID M, ÁLVAREZ-SALGADO X A, PÉREZ F F. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system[J]. Limnology and Oceanography,2006,51(3):1391-1400.
|
[34] |
KRAMER G D, HERNDL G J. Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton[J]. Aquatic Microbial Ecology,2004,36(3):239-246.
|
[35] |
WANG H, WANG Y H, ZHUANG W, et al. Effects of fish culture on particulate organic matter in a reservoir-type river as revealed by absorption spectroscopy and fluorescence EEM-PARAFAC[J]. Chemosphere,2020,239(C):124734.
|
[36] |
MEGHAN O'CONNOR, SAMANTHA R H, DOUGLAS E L, et al. Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter[J]. Water Research,2019,156:23-33.
|
[37] |
郭晗,关雪峰,薛爽,等.光照条件下冰相中激发三线态溶解性有机物的生成及其对三甲基苯酚的光敏化降解作用[J].环境科学学报,2022,42(8):186-193.
|
[38] |
GLOVER C M, ROSARIO-ORTIZ F L. Impact of halides on the photoproduction of reactive intermediates from organic matter[J]. Environmental Science & Technology,2013,47(24):13949-13956.
|
[39] |
MCCABE A J, ARNOLD W A. Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds[J]. Environmental Science Technology,2017,51(17):9718-9728.
|
[1] | FENG Tugen, ZHENG Liuqin, ZHANG Jian, WEI Yang. A NEW RISK ASSESSMENT METHOD FOR HEAVY METAL ORGANIC COMPOUND POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 222-228. doi: 10.13205/j.hjgc.202307030 |
[2] | GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030 |
[3] | DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001 |
[4] | CHE Kai, YU Jinxing, LIU Kecheng, YANG Peng, FAN Hui, WEI Minglei, NIU Xiangnan, HOU Haiping. COMPARATIVE STUDY OF DIFFERENT TOXICITY EVALUATION MODELS ON HEALTH RISK ASSESSMENT OF PAHS IN SOIL OF TYPICAL SUBSTATION SITES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 128-134. doi: 10.13205/j.hjgc.202201019 |
[5] | ZHOU Ying, WANG Xue-mei, JIANG Yu-zhuo, ZHAO Yun-feng, JI Hong-bing. SPECIATION AND ECOLOGICAL RISK ASSESSMENT OF ARSENIC AND MERCURY IN SOIL AROUND A GOLD MINING AREA IN PINGGU DISTRICT, BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 203-210,164. doi: 10.13205/j.hjgc.202108028 |
[6] | LIU Song-hua, ZHOU Jing, JIN Wen-long, TANG Ming, WU Jin. HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 217-224. doi: 10.13205/j.hjgc.202105030 |
[7] | ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033 |
[8] | YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028 |
[9] | XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027 |
[16] | Sun Minhua, Jiang Cuiling, Zhang Peng, Jiang Muxian, Qiu Weijian, Huang Xiaofeng. ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN SEDIMENTS IN LIANGTANG RIVER OF TAIHU BASIN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 118-122. doi: 10.13205/j.hjgc.201508027 |
[17] | Zhu Huina, Yan Qing, Yin Juan. THE MODEL OF WATER QUALITY ASSESSMENT FOR LAKES BASED ON INTERVAL TYPE BAYESIAN[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 130-134. doi: 10.13205/j.hjgc.201502029 |
[18] | Meng Ye Wang Daohan Wang Zhijiang Feng Sijing Li Xiaoxu He Yushu Wang Yonggang, . CASE ANALYSIS OF STREAM TEMPERATURE MANAGEMENT BASED ON TMDL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 123-127. doi: 10.13205/j.hjgc.201501029 |