Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Xi, WU Shan-shan, LU Ke-ding. DEVELOPMENT OF AN EVALUATION SYSTEM FOR ASSESSING CONSTRUCTION LEVEL IN OPERATION OF MUNICIPAL SOLID WASTE COMPREHENSIVE TREATMENT PARK FOR ZERO-WASTE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 136-140,15. doi: 10.13205/j.hjgc.202102022
Citation: ZHOU Qi, HAN Peipei, HOU Yanan, HUANG Cong. CHANGES IN MICROBIAL COMMUNITY OF NITRIFYING SLUDGE UNDER LONG-TERM CARBON DISULFIDE STRESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 51-57. doi: 10.13205/j.hjgc.202403006

CHANGES IN MICROBIAL COMMUNITY OF NITRIFYING SLUDGE UNDER LONG-TERM CARBON DISULFIDE STRESS

doi: 10.13205/j.hjgc.202403006
  • Received Date: 2023-03-30
    Available Online: 2024-05-31
  • About one million tons of CS2 is used in the production of viscose fiber in China every year. CS2 is often removed by aeration in industry. However, some CS2 remains in the water and enters the nitrification unit of wastewater treatment, affecting operational performance. It was found that 10 mg/L CS2 significantly inhibited nitrification sludge activity under short-term stress, low concentration of CS2 (10 to 40 mg/L) could promote the metabolic activity and antioxidant activity of nitrification sludge, and high concentration of CS2 (100 to 200 mg/L) could inhibit the activity. The nitrification reaction was completely inhibited under long-term CS2 stress (20 to 200 mg/L), and white turbidity was found on the surface of nitrification sludge during long-term operation. The white turbidity was analyzed as simple sulfur by liquid chromatography and XPS, and the assimilation process of CS2→COS→H2S→S0→SO2-3→SO2-4 might occur. In 16S rRNA analysis, it was found that the abundance of Actinobacteria and Sinomonas involved in sulfur oxidation has increased, which also verified this hypothesis.
  • [1]
    杨海洋. 二硫化碳生命周期评价[D]. 郑州:河南农业大学, 2022.
    [2]
    张昊杰. 粘胶纤维生产中废水处理技术分析[J]. 化工管理, 2016(9):78.
    [3]
    HYMAN M R, KIM C, ARP D. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide[J]. Journal of Bacteriology, 1990, 172(9):4775-4782.
    [4]
    BREMNER J M, BUNDY L G. Inhibition of nitrification in soils by volatiles sulfur-compounds[J]. Soil Biol Biochem, 1974, 6(3):161-165.
    [5]
    ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12):4704-4712.
    [6]
    POLY F, WERTZ S, BROTHIER E, et al. First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA[J]. FEMS Microbiology Ecology, 2008, 63(1):132-140.
    [7]
    MA Y X, HUANG J, HAN T W, et al. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands[J]. Water Research, 2021, 202:117420.
    [8]
    GUI M Y, CHEN Q, NI J R. Effect of NaCl on aerobic denitrification by strain Achromobacter sp. GAD-3[J]. Applied Microbiology and Biotechnology, 2017, 101(12):5139-5147.
    [9]
    XIE P, HO S H, XIAO Q Y, et al. Revealing the role of nitrate on sulfide removal coupled with bioenergy production in Chlamydomonas sp. Tai-03:metabolic pathways and mechanisms[J]. Journal of Hazardous Materials, 2020, 399:123115.
    [10]
    KIM H S, JEONG S S, LEE J G, et al. Biologically produced sulfur as a novel adsorbent to remove Cd2+ from aqueous solutions[J]. Journal of Hazardous Materials, 2021, 419:126470.
    [11]
    LIU Y, HAN Y, ZHANG J, et al. Deciphering effects of humic acid in landfill leachate on the simultaneous nitrification, anammox and denitrification (SNAD) system from performance, electron transfer and microbial community[J]. Science of the Total Environment, 2022, 809:151178.
    [12]
    HE Y, GUO J B, SONG Y Y, et al. Te(Ⅳ) bioreduction in the sulfur autotrophic reactor:performance, kinetics and synergistic mechanism[J]. Water Research, 2022, 220:118632.
    [13]
    WEI W, HAO Q, CHEN Z, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182:116041.
    [14]
    WANG K, SHENG Y, CAO H, et al. Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor[J]. Chemical Engineering Journal, 2017, 307:150-158.
    [15]
    WENG X, MAO Z, FU H M, et al. Biofilm formation during wastewater treatment:motility and physiological response of aerobic denitrifying bacteria under ammonia stress based on surface plasmon resonance imaging[J]. Bioresource Technology, 2022, 361:127712.
    [16]
    LEMIRE J, ALHASAWI A, APPANNA V P, et al. Metabolic defence against oxidative stress:the road less travelled so far[J]. Journal of Applied Microbiology, 2017, 123(4):798-809.
    [17]
    ANDREYEV A Y, KUSHNAREVA Y E, STARKOV A A. Mitochondrial metabolism of reactive oxygen species[J]. Biochemistry, 2005, 70(2):200-214.
    [18]
    PATEL A, PANDEY V, PATRA D D. Influence of tannery sludge on oil yield, metal uptake and antioxidant activities of Ocimum basilicum L. grown in two different soils[J]. Ecological Engineering, 2015, 83:422-430.
    [19]
    LUCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30):13479-13484.
    [20]
    MALKIN R, RABINOWITZ J C. The reconstitution of clostridial ferredoxin[J]. Biochemical and Biophysical Research Communications, 1966, 23(6):822-827.
    [21]
    VELA J D, DICK G J, LOVE N G. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition[J]. Water Research, 2018, 138:241-249.
    [22]
    HUANG Z, WEI Z, XIAO X, et al. Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal[J]. Bioresource Technology, 2019, 274:18-24.
    [23]
    ZHU F X, YAN Y Y, DOYLE E, et al. Microplastics altered soil microbiome and nitrogen cycling:the role of phthalate plasticizer[J]. Journal of Hazardous Materials, 2022, 427:127944.
    [24]
    WESTERHOLM M, CRAUWELS S, van GEEL M, et al. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge[J]. Applied Microbiology Biotechnology, 2016, 100(12):5339-5352.
    [25]
    CHANG R, BIRD L, BARR C, et al. Thioclava electrotropha sp. nov., a versatile electrode and sulfur-oxidizing bacterium from marine sediments[J]. International Journal of Systematic Evolutionary Microbiology, 2018, 68(5):1652-1658.
    [26]
    LIU Y, LAI Q L, SHAO Z Z. A Multilocus sequence analysis scheme for phylogeny of Thioclava Bacteria and proposal of two novel species[J]. Frontiers in Microbiology, 2017, 8:1321.
  • Relative Articles

    [1]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [2]ZHANG Heng, LI Yao, ZHAO Cong, HUANG Tao, PENG Daoping, CHEN Xing. PHOSPHORUS REMOVAL PERFORMANCE AND MECHANISM IN WATER OF ZINC IRON HYDROTALCITE MODIFIED RED MUD[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 57-65. doi: 10.13205/j.hjgc.202402007
    [3]JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027
    [4]ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
    [5]ZHENG Xingcan, XIA Qiongqiong, SHANG Wei, SUN Yongli, LI Pengfeng. CONSIDERATIONS AND KEY POINTS OF TECHNICAL SPECIFICATION FOR RESOURCE AND ENERGY RECOVERY FROM MUNICIPAL WASTEWATER (T/CUWA 70052-2023)[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 174-180. doi: 10.13205/j.hjgc.202309021
    [6]KONG Jia, SHEN Bo-xiong, KONG Wen-wen, DAN Kai-xuan. EXPERIMENTAL STUDY ON CO2 FIXATION COUPLED WITH WASTEWATER PURIFICATION BY CHLORELLA VULGARIS UNDER DIFFERENT AMMONIUM CONCENTRATIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 9-17,94. doi: 10.13205/j.hjgc.202205002
    [7]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [8]ZHANG Tian, JIANG Bo, XING Yi, YA Hao-bo. REVIEW ON DEVELOPMENT OF ADSORPTION METHODS TO REMOVE ANTIBIOTICS FORM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 29-39. doi: 10.13205/j.hjgc.202103005
    [9]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [10]QIU Fu-guo, LIU Yu-jun, ZHAO Shuang, FU Kun-ming, CAO Xiu-qin. ADSORPTION PROPERTIES OF ORGANIC PHOSPHORUS IN WATER BY WATER TREATMENT RESIDUAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 40-46. doi: 10.13205/j.hjgc.202101005
    [11]LIANG Jia-qi, LV Yuan, LU Yin, WANG Xiang-hui, ZHENG min, XU Kang-ning. RECOVERY OF AMMONIUM AND PHOSPHATE FROM CORN PROCESSING WASTEWATER USING MAGNETIC MgO-BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 89-94. doi: 10.13205/j.hjgc.202009015
    [12]WANG Ruo-fan, WANG Wen-fei, WANG Yu-jun, SHENG Yang, YANG Si-yu, LI Hai-chao. SPECIFIC SELECTION OF FILLERS OF SUBSURFACE FLOW WETLAND AND THE REMOVAL EFFECT OF PO43--P[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 87-91. doi: 10.13205/j.hjgc.202003015
    [13]LI Jing, BAO Dong-jie, WANG Xiang-ning, LIU Zhan-meng. ADSORPTION PROPERTIES AND MECHANISM OF A MAGNETIC NANOCOMPOSITE ADSORBENT (PFM) FOR COPPER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 84-88. doi: 10.13205/j.hjgc.202005015
    [14]YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007
    [15]DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
    [16]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [17]LI Rong, XU Duo, WEI Jie, WANG Dong-tian. PREPARATION OF ADSORBENT BY COMBINED DRINKING WATER TREATMENT SLUDGE AND POWDERED ACTIVATED CARBON AND ITS AMMONIUM REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 95-100,112. doi: 10.13205/j.hjgc.202009016
    [18]YAN Bing-gang, HU Jia-wei, JIANG Xiao-qian, YU Yang, GUAN Yun-tao. ADSORPTION PERFORMANCE AND MECHANISM OF PHOSPHATE AND PHYTIC ACID ON MAGNESIUM-LADEN BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 94-101. doi: 10.13205/j.hjgc.202006015
    [19]LIU Ling-yan, CHEN Shuang-rong, SONG Xue-yan, WANG Sheng-nan, YU Jun-xia, LU Yi-feng. RESEARCH PROGRESS IN REMOVAL OF PHOSPHATE FROM WATER BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 91-97. doi: 10.13205/j.hjgc.202011015
    [20]Lu Yanqin Zhu Li He Zhaoju Zhang Hua Li Xiaoxia, . PHOSPHORUS ADSORPTION FROM WASTEWATER BY IRON-OXIDE-COATED-ZEOLITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 48-52. doi: 10.13205/j.hjgc.201504011
  • Cited by

    Periodical cited type(1)

    1. 张晓涛,刘雍,周思思,邱盛贵,曾维波. 透水砖吸附水体污染物研究进展. 砖瓦. 2024(12): 38-40 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 81.1 %META: 81.1 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.2 %其他: 25.2 %上海: 0.9 %上海: 0.9 %九江: 5.4 %九江: 5.4 %南京: 1.8 %南京: 1.8 %南平: 0.9 %南平: 0.9 %台州: 5.4 %台州: 5.4 %合肥: 0.9 %合肥: 0.9 %大同: 1.8 %大同: 1.8 %天津: 1.8 %天津: 1.8 %常德: 0.9 %常德: 0.9 %张家口: 1.8 %张家口: 1.8 %成都: 0.9 %成都: 0.9 %扬州: 0.9 %扬州: 0.9 %昆明: 0.9 %昆明: 0.9 %晋城: 1.8 %晋城: 1.8 %杭州: 2.7 %杭州: 2.7 %沈阳: 2.7 %沈阳: 2.7 %漯河: 3.6 %漯河: 3.6 %烟台: 2.7 %烟台: 2.7 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 20.7 %芒廷维尤: 20.7 %衢州: 2.7 %衢州: 2.7 %贵阳: 0.9 %贵阳: 0.9 %运城: 4.5 %运城: 4.5 %遵义: 0.9 %遵义: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 2.7 %重庆: 2.7 %长沙: 0.9 %长沙: 0.9 %鞍山: 1.8 %鞍山: 1.8 %其他上海九江南京南平台州合肥大同天津常德张家口成都扬州昆明晋城杭州沈阳漯河烟台石家庄芒廷维尤衢州贵阳运城遵义郑州重庆长沙鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads(5) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return