Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Quanquan, SUN Zewen, ZHONG Yiqi, WU Qing, LIN Zijie, GAO Kangtai, LI Jianlong, HUANG Hong, MA Zhifei, WU Daishe. DUST REMOVAL PERFORMANCE OF SPECIAL-SHAPED DUST FILTER ELEMENT BY COLLISION PULSE INJECTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 108-114. doi: 10.13205/j.hjgc.202403013
Citation: WU Quanquan, SUN Zewen, ZHONG Yiqi, WU Qing, LIN Zijie, GAO Kangtai, LI Jianlong, HUANG Hong, MA Zhifei, WU Daishe. DUST REMOVAL PERFORMANCE OF SPECIAL-SHAPED DUST FILTER ELEMENT BY COLLISION PULSE INJECTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 108-114. doi: 10.13205/j.hjgc.202403013

DUST REMOVAL PERFORMANCE OF SPECIAL-SHAPED DUST FILTER ELEMENT BY COLLISION PULSE INJECTION

doi: 10.13205/j.hjgc.202403013
  • Received Date: 2023-05-10
    Available Online: 2024-05-31
  • To improve the problem of poor pulse cleaning of the filter element, this paper took the special-shaped filter element as the research object, and the pulse injection performance under the combination of filter element shape, nozzle angle, and injection pressure difference was investigated, also the numerical model of pulse injection was built. The flow field inside the filter element was simulated and analyzed by Ansys Fluent software. The results showed that the static pressure in the collision zone of the inverted trapezoid and contractile filter was larger, while that in the trapezoid and bulging filter was smaller. When the nozzle angle increased from -45° to 45°, the injection pressure and performance of the straight cylinder and shrink filter element increased first and then decreased, and the optimal nozzle angle was 30°. Increasing the injection pressure difference PR helped improve the injection performance of the filter element, and the pressure difference had a stronger effect on the injection performance of the shrink filter element than that of the straight cylinder filter element. Generally, the shrinkage structure of the dust filter element is beneficial to improve the cleaning performance of the pulse injection.
  • [1]
    YUAN Z, KHAKZAD N, KHAN F, et al. Dust explosions:a threat to the process industries[J]. Process Safety and Environmental Protection, 2015,98:57-71.
    [2]
    ZHANG M X, QIN W Q, MA X H, et al. An environmentally friendly technology of metal fiber bag filter to purify dust-laden airflow[J]. Atmosphere, 2022,13(3):485.
    [3]
    XING Y, YU H, LU P, et al. Experimental research on purifying ultrafine nanoparticle by SBA-15 and its filtration mechanism[J]. Powder Technology, 2017,330:32-39.
    [4]
    POPE C A, DOCKERY D W. Health effects of fine particulate air pollution:lines that connect[J]. Journal of the Air & Waste Management Association, 2006,56(6):709-742.
    [5]
    乐有邦, 张发涛, 胡维西, 等. 中美两国粉尘爆炸风险评估对比研究与分析[J]. 工业安全与环保, 2020,46(11):60-62.
    [6]
    张建平, 陈思艺, 王帅, 等. 扩散荷电对两种ESP除尘性能影响的对比分析[J].环境工程, 2019, 37(8):143-147.
    [7]
    李海英,董格伦,张军亚,等.基于湿式除尘的扬尘抑制技术研究进展[J].节能,2022,41(2):77-80.
    [8]
    钟永会.发尘角度对旋风除尘效率影响的实验研究[J].科学技术创新,2023(10):52-55.
    [9]
    于伟静. 燃煤电厂烟尘超低排放技术研究现状及发展[J]. 化工进展, 2017,36(增刊1):428-435.
    [10]
    姚群, 宋七棣, 陈志炜. 2020年袋式除尘行业发展评述和展望[J]. 中国环保产业, 2021(3):19-22.
    [11]
    LI J S, WU Q Q, HUANG Y Y, et al. Particulate matters filtration by a filter medium with pin holes:modeling and experimental verification[J]. Process Safety and Environmental Protection, 2022,158:282-290.
    [12]
    张殿印,王纯. 脉冲袋式除尘器手册[M]. 北京:化学工业出版社, 2011.
    [13]
    李建龙, 王安琪, 范博, 等. 除尘器脉喷清灰影响阶段的粉尘分级排放特征[J]. 安全与环境学报, 2018,18(1):315-319.
    [14]
    艾子昂,吴泉泉,孙燕,等.气流隔板改善滤筒脉喷清灰性能的数值模拟[J].南昌大学学报(工科版),2021,43(4):384-391.
    [15]
    YAN C P, LIU G J, CHEN H Y. Effect of induced airflow on the surface static pressure of pleated fabric filter cartridges during pulse jet cleaning[J]. Powder Technology, 2013,249:424-430.
    [16]
    李建龙, 陈源正, 林子捷, 等. 除尘滤筒脉喷清灰技术研究进展与展望[J]. 金属矿山, 2022(11):23-35.
    [17]
    郗元, 赵赫民, 代岩.滤筒结构对除尘器性能影响的CFD研究[J].机械设计与制造,2018,332(10):233-235

    ,239.
    [18]
    魏民, 钱付平, 何东洋, 等. 除尘器新形褶式滤筒的结构优化及系列化设计[J]. 安徽工业大学学报(自然科学版), 2020,37(2):172-179.
    [19]
    陈强, 林子捷, 李建龙, 等. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟[J]. 环境工程学报, 2021,15(5):1634-1644.
    [20]
    LIN Z J, LI J L, CHEN D R, et al. Improved performance of the opposing pulsed-jet cleaning by annular-slit nozzles for pleated filter cartridges[J]. Separation and Purification Technology, 2022,303:122233.
    [21]
    刘东,余洪浪,王令,等.上部开口散射器提高脉冲喷吹清灰性能实验[J].环境工程,2019,37(8):138-142.
    [22]
    LI J L, WANG P, WU D S, et al. Numerical study of opposing pulsed-jet cleaning for pleated filter cartridges[J]. Separation and Purification Technology, 2020,234:116086.
    [23]
    LI J L, WU D S, WU Q Q, et al. Design and performance evaluation of novel colliding pulse jet for dust filter cleaning[J]. Separation and Purification Technology, 2019,213:101-113.
    [24]
    WU Q Q, LI J L, WU D R, et al. Effects of the overall length and OD on opposing-pulse-jet cleaning for pleated filter cartridges[J]. Aerosol and Air Quality Research, 2020,20(3):432-443.
    [25]
    李建龙, 林子捷, 陈源正, 等.文丘里喷嘴改进除尘滤筒对撞脉喷清灰性能的数值模拟[J].安全与环境学报,2022,22(3):1558-1565.
    [26]
    李建龙, 赵艺, 孙泽文, 等. 环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟[J].南昌大学学报(工科版),2023,45(1):1-4.
  • Relative Articles

    [1]WU Quanquan, SUN Zewen, ZHONG Yiqi, WU Qing, LIN Zijie, GAO Kangtai, LI Jianlong, HUANG Hong, MA Zhifei, WU Daishe. DUST REMOVAL PERFORMANCE OF SPECIAL-SHAPED DUST FILTER ELEMENT BY COLLISION PULSE INJECTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 108-114. doi: 10.13205/j.hjgc.202403013
    [2]DU Chuan, LI Houen, CHEN Suyun. APPLICATION OF NUMERICAL SIMULATION TECHNOLOGY IN EXTRACTION AND TREATMENT OF POLLUTED GROUNDWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 102-108. doi: 10.13205/j.hjgc.202307014
    [3]ZHANG You, ZHAO Tingting, DU Ranli, LI Huashan, KONG Xiangcheng, XUE Jianliang. NUMERICAL SIMULATION ANALYSIS OF FLOW CHARACTERISTICS OF DESCENDING FILM EVAPORATION OF SALT-CONTAINING WASTEWATER IN COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 17-22,31. doi: 10.13205/j.hjgc.202306003
    [4]LI Jian, WU Chunmao, QI Zhanfeng. NUMERICAL SIMULATION OF AIRFLOW DISTRIBUTION AND STRUCTURAL OPTIMIZATION IN AN ELECTROSTATIC OIL MIST PURIFIER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 202-208. doi: 10.13205/j.hjgc.202308026
    [5]LIU Pengyu, LI Debo, LIU Yanfeng, QUE Zhengbin, MIAO Jianjie, CHEN Zhaoli. RESEARCH PROGRESS ON NUMERICAL SIMULATION OF SCR DENITRIFICATION SYSTEM IN A COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 224-232. doi: 10.13205/j.hjgc.202210029
    [6]ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
    [7]LI Debo, CHEN Zhaoli, CHEN Zhihao, FENG Yongxin, HUANG Zigan, WEI Chen, MA Xiaoqian. NUMERICAL SIMULATION OF MIXED FIRING OF AGED REFUSE AND AIR DISTRIBUTION OPTIMIZATION IN A MSW INCINERATION FURNACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 113-119. doi: 10.13205/j.hjgc.202211016
    [8]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [9]LI Wenjun, ZHENG Chenghang, WANG Yifan, ZHAO Zhongyang, LIU Chang, WU Weihong, LIU Shaojun. NUMERICAL SIMULATION ON SPRAY EVAPORATION PROCESS FOR SMALL-SCALE QUENCH TOWER IN LIMITED SPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 50-56,78. doi: 10.13205/j.hjgc.202204008
    [10]YE Yu, XU Wenyu, LU Chunhui, XIE Yifan, LUO Jian. IMPACT OF SURROUNDING HIGH-PERMEABLE POROUS MEDIA ON REMEDIATION EFFICIENCY OF MULTI-SCREEN WELLS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 43-49,146. doi: 10.13205/j.hjgc.202204007
    [11]NIE Peng-fei, GAO Zhi, MENG De-run, ZHANG Hong-bo, ZHANG Qing. APPLICATION OF CFD IN A DOUBLE STAGE DESULFURIZATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 119-124,130. doi: 10.13205/j.hjgc.202108016
    [12]HAN Xiao-dong, SUN Ye. SITE SELECTION OF WASTE TRANSFER STATION BASED ON NUMERICAL SIMULATIONS OF ODOR DISPERSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 130-135. doi: 10.13205/j.hjgc.202103018
    [13]QIU Jun, LIN Zi-jie, LI Jian-long, WU Quan-quan, WU Dai-she. INFLUENCE OF DUST CAKE PEELING OFF ON PULSE-JET CLEANING PERFORMANCE OF FILTER CARTRIDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 113-118. doi: 10.13205/j.hjgc.202108015
    [14]ZHAO Kun, LI Ruo-hua, CHENG Wen-long, YANG Yuan-ping, YUE Shu-bo. NUMERICAL SIMULATION STUDY ON ENVIRONMENTAL IMPACT OF SEWAGE DISCHARGE ON ESTUARY WATER FUNCTIONAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 33-40. doi: 10.13205/j.hjgc.202010006
    [15]ZHOU Chuan, WU Qi-rong, YU Jiang-tao, QIN Fu-chu. NUMERICAL SIMULATION FOR FGD WASTEWATER EVAPORATION IN THE FLUE DUCT OF A 2×350 MW COAL-FIRED UNIT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 96-101. doi: 10.13205/j.hjgc.202005017
    [16]QU Guang-fei, AN Zhi, NING Ping, XIE Ruo-song. GENERAL SURVEY ON APPLICATION OF NUMERICAL SIMULATION IN SEWAGE BIOLOGICAL TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 99-104,179. doi: 10.13205/j.hjgc.202003017
    [17]YUE Wen-yi, DUAN Chao-long, XIE Dong-ming. SIMULATION OF INTERIOR FLOW FIELD IN THE COMPOSITE BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 120-125,95. doi: 10.13205/j.hjgc.202005021
    [18]Mao Rui, Liu Genfan, Deng Xiang, Fan Ning. NUMERICAL SIMULATION STUDY ON STRUCTURAL DEVELOPMENT OF BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 77-81. doi: 10.13205/j.hjgc.201503016
    [19]Ding Zhijiang Lu Mingyuan Xiao Lichun, . NUMERICAL SIMULATION METHOD OF GAS FLOW DISTRIBUTION IN ELECTROSTATIC PRECIPITATOR FOR CONVERTER GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 92-96. doi: 10.13205/j.hjgc.201504019
  • Cited by

    Periodical cited type(2)

    1. 钟国坚,刘荣春,陈木凤. 电除尘器不同极配形式对放电性能的影响研究. 中央民族大学学报(自然科学版). 2025(01): 90-96 .
    2. 王仲,黄鸿成,张瑜,姜娇,毕娜,贾凌寒,李辉,米俊锋,杜胜男. 接地极雾化电晕放电除尘器的研究. 应用化工. 2024(11): 2667-2671 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 87.6 %META: 87.6 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.8 %其他: 26.8 %其他: 0.7 %其他: 0.7 %南京: 2.0 %南京: 2.0 %合肥: 0.7 %合肥: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大同: 0.7 %大同: 0.7 %天津: 1.3 %天津: 1.3 %孝感: 0.7 %孝感: 0.7 %常德: 0.7 %常德: 0.7 %张家口: 4.6 %张家口: 4.6 %成都: 1.3 %成都: 1.3 %扬州: 1.3 %扬州: 1.3 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %杭州: 2.6 %杭州: 2.6 %沈阳: 2.6 %沈阳: 2.6 %淮南: 0.7 %淮南: 0.7 %湖州: 1.3 %湖州: 1.3 %漯河: 4.6 %漯河: 4.6 %潍坊: 0.7 %潍坊: 0.7 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.7 %福州: 0.7 %芒廷维尤: 24.8 %芒廷维尤: 24.8 %芝加哥: 4.6 %芝加哥: 4.6 %衢州: 1.3 %衢州: 1.3 %西安: 2.6 %西安: 2.6 %贵阳: 0.7 %贵阳: 0.7 %运城: 3.9 %运城: 3.9 %遵义: 0.7 %遵义: 0.7 %郑州: 2.0 %郑州: 2.0 %重庆: 2.0 %重庆: 2.0 %银川: 1.3 %银川: 1.3 %其他其他南京合肥嘉兴大同天津孝感常德张家口成都扬州昆明晋城杭州沈阳淮南湖州漯河潍坊石家庄福州芒廷维尤芝加哥衢州西安贵阳运城遵义郑州重庆银川

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(4) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return