Citation: | LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016 |
[1] |
唐心漪,陈翔宇,益唐心漪,等. 剩余污泥热碱处理及其对污泥厌氧消化的强化研究进展[J].环境工程,2022,40(5):218-226.
|
[2] |
李续磊,王铮,常风民,等. 园林废弃物与餐厨厌氧沼渣混合热解特性及动力学分析[J]. 环境工程学报,2022,16(9):2992-2999.
|
[3] |
CHAKRABORTY D, KARTHIKEYAN O P, SELVAM A, et al. Two-phase anaerobic digestion of food waste:effect of semi-continuous feeding on acidogenesis and methane production[J]. Bioresource Technology,2022,346:126396.
|
[4] |
PANIAGUA S, LEBRERO R, MUÑOZ R. Syngas biomethanation:current state and future perspectives[J]. Bioresource Technology,2022,358:127436.
|
[5] |
李茜茜,冯俊小. 有机固废热解动力学的研究进展[J].环境工程,2022,40(10):215-223.
|
[6] |
张藤元,冯俊小,冯龙. 基于Aspen Plus的生活垃圾热解气化模拟及正交优化[J].环境工程,2022,40(2):113-119.
|
[7] |
SIKARWAR V S, POHOŘELY M, MEERS E, et al. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization[J]. Fuel,2021,294:120533.
|
[8] |
ANGENENT L T, USACK J G, XU J, et al. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion[J]. Bioresource Technology,2018,247:1085-1094.
|
[9] |
XU H, WANG K J, ZHANG X Q, et al. Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment[J]. Bioresource Technology,2020,299:122598.
|
[10] |
颜锟,徐恒,崔康平,等. 厌氧微生物对CO的降解转化特性研究[J]. 中国沼气,2017,35(1):3-8.
|
[11] |
ANDREIDES D,POKORNA D,ZABRANSKA J. Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenization[J]. Fuel,2022,320:123929.
|
[12] |
LI Y Q,LIU Y J,WANG X M, et al. Biomethanation of syngas at high CO concentration in a continuous mode[J]. Bioresource Technology,2022,346:126407.
|
[13] |
LI C X,ZHU X X,ANGELIDAKI I, et al. Carbon monoxide conversion and syngas biomethanation mediated by different mi-crobial consortia[J]. Bioresource Technology,2020,314:123739.
|
[14] |
ZHANG Z W, DING C, WANG L Y, et al. CO biomethanation with different anaerobic granular sludges[J]. Waste and Biomass Valorization,2021,12(7):3913-3925.
|
[15] |
CHA S, LIM H G, KWON S, et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals[J]. Metabolic Engineering,2021,64:146-153.
|
[16] |
ASIMAKOPOULOS K, KAUFMANN-ELFANG M, LUNDHOLM-HØFFNER C, et al. Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation[J]. Applied Energy,2021,290:116771.
|
[17] |
ASIMAKOPOULOS K, GAVALA H N, SKIADAS I V. Reactor systems for syngas fermentation processes:a review[J]. Chemical Engineering Journal,2018,348:732-744.
|
[18] |
LI C, ZHU X, ANGELIDAKI I. Syngas biomethanation:effect of biomass-gas ratio, syngas composition, and pH buffer[J]. Bioresource Technology,2021,342:125997.
|
[19] |
SUN H X, YANG Z Y, ZHAO Q, et al. Modification and extension of anaerobic digestion model No. 1 (ADM1) for syngas biomethanation simulation:from lab-scale to pilot-scale[J]. Chemical Engineering Journal,2021,403:126177.
|
[20] |
黄博.餐厨垃圾分选有机废物热解特性及示范工程研究[D]. 北京:北京化工大学,2017.
|
[21] |
LIU C L, ZHAO Z H, LUO J, et al. Hydrogen-rich syngas production by the three-dimensional structure of LaNiO3 catalyst from a blend of acetic acid and acetone as a bio-oil model compound[J]. International Journal of Hydrogen Energy,2022,47(34):15160-15174.
|
[22] |
PARK J G, KWON H J, CHEON A I, et al. Jet-nozzle based improvement of dissolved H2 concentration for efficient in-situ biogas upgrading in an up-flow anaerobic sludge blanket (UASB) reactor[J]. Renewable Energy,2021,168:270-279.
|
[23] |
HAWKES F R, GUWY A J, HAWKES D L, et al. On-line monitoring of anaerobic digestion:application of a device for continuous measurement of bicarbonate alkalinity[J]. Water Science & Technology,1994,30(12):1-10.
|
[24] |
GUIOT S R, CIMPOIA R, CARAYON G. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas[J]. Environmental Science & Technology,2011,45(5):2006-2012.
|
[25] |
FU S F, ANGELIDAKI I, ZHANG Y F. In situ biogas upgrading by CO2-to-CH4 bioconversion[J]. Trends in Biotechnology,2021,39(4):336-347.
|
[26] |
赵明明,李夕耀,李璐凯,等. 碱度类型及浓度对剩余污泥中温厌氧消化的影响[J]. 中国环境科学,2019,39(5):1954-1960.
|
[27] |
GAVALA H N, GRIMALT-ALEMANY A, ASIMAKOPOULOS K, et al. Gas biological conversions:the potential of syngas and carbon dioxide as production platforms[J]. Waste and Biomass Valorization,2021,12(10):5303-5328.
|
[28] |
张振文. 基于生物质气化合成气利用的CO生物甲烷化[D]. 杭州:浙江大学,2020.
|
[1] | LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010 |
[2] | ZHANG Heng, LI Yao, ZHAO Cong, HUANG Tao, PENG Daoping, CHEN Xing. PHOSPHORUS REMOVAL PERFORMANCE AND MECHANISM IN WATER OF ZINC IRON HYDROTALCITE MODIFIED RED MUD[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 57-65. doi: 10.13205/j.hjgc.202402007 |
[3] | JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027 |
[4] | ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003 |
[5] | ZHENG Xingcan, XIA Qiongqiong, SHANG Wei, SUN Yongli, LI Pengfeng. CONSIDERATIONS AND KEY POINTS OF TECHNICAL SPECIFICATION FOR RESOURCE AND ENERGY RECOVERY FROM MUNICIPAL WASTEWATER (T/CUWA 70052-2023)[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 174-180. doi: 10.13205/j.hjgc.202309021 |
[6] | KONG Jia, SHEN Bo-xiong, KONG Wen-wen, DAN Kai-xuan. EXPERIMENTAL STUDY ON CO2 FIXATION COUPLED WITH WASTEWATER PURIFICATION BY CHLORELLA VULGARIS UNDER DIFFERENT AMMONIUM CONCENTRATIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 9-17,94. doi: 10.13205/j.hjgc.202205002 |
[7] | JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005 |
[8] | ZHANG Tian, JIANG Bo, XING Yi, YA Hao-bo. REVIEW ON DEVELOPMENT OF ADSORPTION METHODS TO REMOVE ANTIBIOTICS FORM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 29-39. doi: 10.13205/j.hjgc.202103005 |
[9] | WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013 |
[10] | QIU Fu-guo, LIU Yu-jun, ZHAO Shuang, FU Kun-ming, CAO Xiu-qin. ADSORPTION PROPERTIES OF ORGANIC PHOSPHORUS IN WATER BY WATER TREATMENT RESIDUAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 40-46. doi: 10.13205/j.hjgc.202101005 |
[11] | LIANG Jia-qi, LV Yuan, LU Yin, WANG Xiang-hui, ZHENG min, XU Kang-ning. RECOVERY OF AMMONIUM AND PHOSPHATE FROM CORN PROCESSING WASTEWATER USING MAGNETIC MgO-BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 89-94. doi: 10.13205/j.hjgc.202009015 |
[12] | WANG Ruo-fan, WANG Wen-fei, WANG Yu-jun, SHENG Yang, YANG Si-yu, LI Hai-chao. SPECIFIC SELECTION OF FILLERS OF SUBSURFACE FLOW WETLAND AND THE REMOVAL EFFECT OF PO43--P[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 87-91. doi: 10.13205/j.hjgc.202003015 |
[13] | LI Jing, BAO Dong-jie, WANG Xiang-ning, LIU Zhan-meng. ADSORPTION PROPERTIES AND MECHANISM OF A MAGNETIC NANOCOMPOSITE ADSORBENT (PFM) FOR COPPER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 84-88. doi: 10.13205/j.hjgc.202005015 |
[14] | YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007 |
[15] | DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013 |
[16] | CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020 |
[17] | LI Rong, XU Duo, WEI Jie, WANG Dong-tian. PREPARATION OF ADSORBENT BY COMBINED DRINKING WATER TREATMENT SLUDGE AND POWDERED ACTIVATED CARBON AND ITS AMMONIUM REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 95-100,112. doi: 10.13205/j.hjgc.202009016 |
[18] | YAN Bing-gang, HU Jia-wei, JIANG Xiao-qian, YU Yang, GUAN Yun-tao. ADSORPTION PERFORMANCE AND MECHANISM OF PHOSPHATE AND PHYTIC ACID ON MAGNESIUM-LADEN BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 94-101. doi: 10.13205/j.hjgc.202006015 |
[19] | LIU Ling-yan, CHEN Shuang-rong, SONG Xue-yan, WANG Sheng-nan, YU Jun-xia, LU Yi-feng. RESEARCH PROGRESS IN REMOVAL OF PHOSPHATE FROM WATER BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 91-97. doi: 10.13205/j.hjgc.202011015 |
[20] | Lu Yanqin Zhu Li He Zhaoju Zhang Hua Li Xiaoxia, . PHOSPHORUS ADSORPTION FROM WASTEWATER BY IRON-OXIDE-COATED-ZEOLITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 48-52. doi: 10.13205/j.hjgc.201504011 |
1. | 张晓涛,刘雍,周思思,邱盛贵,曾维波. 透水砖吸附水体污染物研究进展. 砖瓦. 2024(12): 38-40 . ![]() |