Citation: | LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016 |
[1] |
唐心漪,陈翔宇,益唐心漪,等. 剩余污泥热碱处理及其对污泥厌氧消化的强化研究进展[J].环境工程,2022,40(5):218-226.
|
[2] |
李续磊,王铮,常风民,等. 园林废弃物与餐厨厌氧沼渣混合热解特性及动力学分析[J]. 环境工程学报,2022,16(9):2992-2999.
|
[3] |
CHAKRABORTY D, KARTHIKEYAN O P, SELVAM A, et al. Two-phase anaerobic digestion of food waste:effect of semi-continuous feeding on acidogenesis and methane production[J]. Bioresource Technology,2022,346:126396.
|
[4] |
PANIAGUA S, LEBRERO R, MUÑOZ R. Syngas biomethanation:current state and future perspectives[J]. Bioresource Technology,2022,358:127436.
|
[5] |
李茜茜,冯俊小. 有机固废热解动力学的研究进展[J].环境工程,2022,40(10):215-223.
|
[6] |
张藤元,冯俊小,冯龙. 基于Aspen Plus的生活垃圾热解气化模拟及正交优化[J].环境工程,2022,40(2):113-119.
|
[7] |
SIKARWAR V S, POHOŘELY M, MEERS E, et al. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization[J]. Fuel,2021,294:120533.
|
[8] |
ANGENENT L T, USACK J G, XU J, et al. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion[J]. Bioresource Technology,2018,247:1085-1094.
|
[9] |
XU H, WANG K J, ZHANG X Q, et al. Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment[J]. Bioresource Technology,2020,299:122598.
|
[10] |
颜锟,徐恒,崔康平,等. 厌氧微生物对CO的降解转化特性研究[J]. 中国沼气,2017,35(1):3-8.
|
[11] |
ANDREIDES D,POKORNA D,ZABRANSKA J. Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenization[J]. Fuel,2022,320:123929.
|
[12] |
LI Y Q,LIU Y J,WANG X M, et al. Biomethanation of syngas at high CO concentration in a continuous mode[J]. Bioresource Technology,2022,346:126407.
|
[13] |
LI C X,ZHU X X,ANGELIDAKI I, et al. Carbon monoxide conversion and syngas biomethanation mediated by different mi-crobial consortia[J]. Bioresource Technology,2020,314:123739.
|
[14] |
ZHANG Z W, DING C, WANG L Y, et al. CO biomethanation with different anaerobic granular sludges[J]. Waste and Biomass Valorization,2021,12(7):3913-3925.
|
[15] |
CHA S, LIM H G, KWON S, et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals[J]. Metabolic Engineering,2021,64:146-153.
|
[16] |
ASIMAKOPOULOS K, KAUFMANN-ELFANG M, LUNDHOLM-HØFFNER C, et al. Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation[J]. Applied Energy,2021,290:116771.
|
[17] |
ASIMAKOPOULOS K, GAVALA H N, SKIADAS I V. Reactor systems for syngas fermentation processes:a review[J]. Chemical Engineering Journal,2018,348:732-744.
|
[18] |
LI C, ZHU X, ANGELIDAKI I. Syngas biomethanation:effect of biomass-gas ratio, syngas composition, and pH buffer[J]. Bioresource Technology,2021,342:125997.
|
[19] |
SUN H X, YANG Z Y, ZHAO Q, et al. Modification and extension of anaerobic digestion model No. 1 (ADM1) for syngas biomethanation simulation:from lab-scale to pilot-scale[J]. Chemical Engineering Journal,2021,403:126177.
|
[20] |
黄博.餐厨垃圾分选有机废物热解特性及示范工程研究[D]. 北京:北京化工大学,2017.
|
[21] |
LIU C L, ZHAO Z H, LUO J, et al. Hydrogen-rich syngas production by the three-dimensional structure of LaNiO3 catalyst from a blend of acetic acid and acetone as a bio-oil model compound[J]. International Journal of Hydrogen Energy,2022,47(34):15160-15174.
|
[22] |
PARK J G, KWON H J, CHEON A I, et al. Jet-nozzle based improvement of dissolved H2 concentration for efficient in-situ biogas upgrading in an up-flow anaerobic sludge blanket (UASB) reactor[J]. Renewable Energy,2021,168:270-279.
|
[23] |
HAWKES F R, GUWY A J, HAWKES D L, et al. On-line monitoring of anaerobic digestion:application of a device for continuous measurement of bicarbonate alkalinity[J]. Water Science & Technology,1994,30(12):1-10.
|
[24] |
GUIOT S R, CIMPOIA R, CARAYON G. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas[J]. Environmental Science & Technology,2011,45(5):2006-2012.
|
[25] |
FU S F, ANGELIDAKI I, ZHANG Y F. In situ biogas upgrading by CO2-to-CH4 bioconversion[J]. Trends in Biotechnology,2021,39(4):336-347.
|
[26] |
赵明明,李夕耀,李璐凯,等. 碱度类型及浓度对剩余污泥中温厌氧消化的影响[J]. 中国环境科学,2019,39(5):1954-1960.
|
[27] |
GAVALA H N, GRIMALT-ALEMANY A, ASIMAKOPOULOS K, et al. Gas biological conversions:the potential of syngas and carbon dioxide as production platforms[J]. Waste and Biomass Valorization,2021,12(10):5303-5328.
|
[28] |
张振文. 基于生物质气化合成气利用的CO生物甲烷化[D]. 杭州:浙江大学,2020.
|