Citation: | WU Yuedong, LÜ Wen, YUE Changsheng, WU Long, PENG Ben. THEORETICAL RESEARCH AND APPLICATION OF CARBONATION AND MICROBIAL MINERALIZATION OF STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 171-175. doi: 10.13205/j.hjgc.202403021 |
[1] |
姚雁彬. "碳中和"愿景下我国城市生活垃圾低碳管理研究:时空演化、驱动因素、减排路径[D]. 扬州:扬州大学,2022.
|
[2] |
郭晓玉. 基于绿色技术创新视角下的煤炭企业价值评估研究[D].呼和浩特:内蒙古财经大学,2022.
|
[3] |
吴跃东,彭犇,吴龙, 等.国内外钢渣处理与资源化利用技术发展现状综述[J].环境工程,2021,39(1):161-165.
|
[4] |
任旭,王会刚,吴跃东, 等."双碳"目标下钢渣处理及资源化利用探讨[J].环境工程,2022,40(8):220-224.
|
[5] |
裴建德. 利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究[D]. 北京:北京科技大学, 2019.
|
[6] |
王丹. 钢渣碳酸化过程中碳酸钙生长与性能关系[D].大连:大连理工大学,2020.
|
[7] |
MASLEHUDDIN M, SHARIF A M, SHAMEEM M. Comparison of properties of steel slag and crushed limestone aggregate concretes[J]. Construction and Building Materials, 2003, 17(2):105-112.
|
[8] |
WANG Q, YAN P Y. Hydration properties of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2010, 24(7):1134-1140.
|
[9] |
李刚林. 碳化钢渣制备墙地建材制品[D]. 济南:济南大学, 2015.
|
[10] |
SEIFRITZ W. CO2 disposal by means of silicates[J]. 1990, 345:486.
|
[11] |
HUIJGEN W J J. Carbon dioxide sequestration by mineral carbonation[J]. Wur Wageningen Ur, 2007, 3(8):13.
|
[12] |
HUIJGEN W, WITKAMP G J, COMANS R. Mineral CO2 sequestration in alkaline soldi residues[C]//International Conference on Greenhouse Gas Control Technologies, 2004.
|
[13] |
BACIOCCHI R, COSTA G, POLETTINI A, et al. Accelerated carbonation of steel slags using CO2 diluted sources:CO2 uptakes and energy requirements[J]. Frontiers in Energy Research, 2016, 3:56.
|
[14] |
STOLAROFF J K, LOWRY G V, KEITH D W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration[J]. Energy Conversion & Management, 2005, 46(5):687-699.
|
[15] |
彭犇,岳昌盛,李玉祥, 等.不同条件对钢渣碳酸化反应的影响及动力学分析[J].硅酸盐通报,2020,39(11):3562-3566.
|
[16] |
房延凤. 钢渣中碱性矿物碳酸化及产物衍变规律研究[D]. 大连:大连理工大学, 2017.
|
[17] |
姚恒山,陈思佳,陈德伟, 等.加速碳酸化条件下钢渣块体体积安定性的研究[J].硅酸盐通报,2020,39(1):187-193.
|
[18] |
顾杨杨. 碳酸化钢渣制品的耐久性研究[D]. 大连:大连理工大学,2020.
|
[19] |
姚恒山. 非水硬性硅酸钙碳酸化反应过程研究[D]. 镇江:江苏大学,2020.
|
[20] |
BACIOCCHI R, COSTA G, DI GIANFILIPPO M, et al. Thin-film versus slurry-phase carbonation of steel slag:CO2 uptake and effects on mineralogy[J]. Journal of Hazardous Materials, 2015, 283:302-313.
|
[21] |
涂茂霞, 雷泽, 吕晓芳, 等. 水淬钢渣碳酸化固定CO2[J]. 环境工程学报, 2015, 9(9):4514-4518.
|
[22] |
MO L W, ZHANG F, DENG M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing[J]. Cement and Concrete Research, 2016, 88:217-226.
|
[23] |
王日伟, 周宏仓, 何都良, 等. 低浓度碱强化钢渣固定CO2[J]. 科学技术与工程, 2017,17(27):338-342.
|
[24] |
LIANG X, YE Z, CHANG J. Early hydration activity of composite with carbonated steel slag[J]. Journal of the Chinese Ceramic Society, 2012, 6:18-26.
|
[25] |
储健. 转炉钢渣碳化砖的试验研究初探[J]. 粉煤灰, 1998(2):26-28.
|
[26] |
侯贵华, 卢豹, 郜效娇, 等. 新型低钙水泥的制备及其碳化硬化过程[J]. 硅酸盐学报, 2015,44(2):112-117.
|
[27] |
刘雨. 微生物固碳钢渣建材制品矿化胶凝机制与调控技术基础研究[D]. 南京:东南大学, 2018.
|
[28] |
钱春香, 张霄, 伊海赫. 微生物提升钢渣胶凝材料安定性和强度的作用及机理[J]. 硅酸盐通报, 2020, 39(8):2363-2371.
|
[29] |
荣辉, 韩兆攀, 唐天佼, 等. 不同介质对微生物矿化钢渣安定性影响效果研究[J]. 新型建筑材料, 2023, 50(1):113-118.
|
[30] |
孙翠平. 铁盐、钢渣辅助深海微生物除磷效能与机理[D]. 济南:山东大学, 2015.
|
[31] |
闫萌萌, 黄永炳, 牛晨雨, 等. 微生物改性钢渣去除废水中砷(Ⅲ)的性能研究[J]. 武汉理工大学学报, 2017, 39(4):69-74
,88.
|
[32] |
ZHANG J K, SU P D, LI Y D, et al.Environmental investigation of biomodification of steel slag through microbially induced carbon-ate precipitation[J]. Journal of Environmental Sciences, 2021, 101:282-292.
|
[33] |
WANG K, QIAN C X, WANG R X. The properties and mechanism of microbial mineralized steel slag bricks[J]. Construction and Building Materials, 2016, 113:815-823.
|
[34] |
伊海赫. 微生物提升钢渣胶凝材料安定性和利用率的作用及机理[D]. 南京:东南大学, 2020.
|
[35] |
张永胜, 苏依林, 詹其伟. 微生物矿化废渣制备建材制品[J].江西建材,2019(4):23-24.
|