Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HU Jianwei, CHEN Xuelong, ZHANG Heng, LIU Haodong, PANG Chengli, LI Dengfeng. EXPERIMENTAL STUDY ON BACKFILLING OF MICROBIAL MODIFIED FERTILIZER TANK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 176-183. doi: 10.13205/j.hjgc.202403022
Citation: HU Jianwei, CHEN Xuelong, ZHANG Heng, LIU Haodong, PANG Chengli, LI Dengfeng. EXPERIMENTAL STUDY ON BACKFILLING OF MICROBIAL MODIFIED FERTILIZER TANK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 176-183. doi: 10.13205/j.hjgc.202403022

EXPERIMENTAL STUDY ON BACKFILLING OF MICROBIAL MODIFIED FERTILIZER TANK

doi: 10.13205/j.hjgc.202403022
  • Received Date: 2023-08-30
    Available Online: 2024-05-31
  • In modern urban construction, deep and large foundation pits, and narrow and ultra-deep fertilizer tanks are becoming more and more common. Due to the limited working space, the backfill quality of such fertilizer tanks is generally low, resulting in uneven settlement, water seepage, and anti-floating problems of soil around the fertilizer tanks in the later stage. New and effective measures are urgently needed to improve the backfill quality of fertilizer tanks. Microbial induced calcium carbonate deposition (MICP), as a new reinforcement technique, can be used to improve the strength of backfill and reduce the permeability of backfill. In this paper, laboratory experiments were conducted to discuss the modification effect of the two modification methods under different cell concentrations of the bacterial solution, the proportion of cementing dry powder applied, and the proportion of cementing liquid concentration. Then, the modification method with the best ratio was applied to practical projects for verification. The results showed that, compared with the unmodified sample, the permeability coefficient of the mixing method was significantly reduced by 2 to 4 orders of magnitude. Both the seepage method and the mixing method can effectively improve the quality of the backfill. Compared with the mixing method, the seepage method had a better modification effect and controllable cementation quality. The optimal additive ratio of the percolation method was 10 times diluted bacterial solution and low concentration 0.5 mol/L∶0.5 mol/L (concentration ratio of urea to Call2)of cemented solution. Field verification test showed that the unconfined compressive strength of the modified fertilizer tank backfill was increased by 174.2% to 772.7%, compared with the conventional measure. The compressibility coefficient of the modified fertilizer tank backfill was smaller than that of the conventional backfill, and the medium compressible soil became low compressible soil. The porosity ratio and permeability coefficient of modified fertilizer tank backfill were obviously lower than those of conventional backfill. After the test, the non-uniform settlement of the backfill in the fertilizer tank was basically eliminated, the ability to block groundwater seepage was enhanced, and the quality of the backfill was significantly improved.
  • loading
  • [1]
    王英军,黄昌乾.肥槽回填土常见工程问题与处理方法[J].岩土工程技术,2019,33(2):84-88.
    [2]
    郑洪流.基坑肥槽积水对构筑物地下室的危害[J].中国煤炭地质,2013,25(5):40-42.
    [3]
    熊柱红,王子沁,郭亮,等.基坑肥槽回填土渗透性试验研究[J].四川建筑科学研究,2021,47(6):52-57.
    [4]
    孟志山.肥槽回填土质量控制措施[J].河北建筑工程学院学报,2009,27(1):26-27.
    [5]
    刘汉龙,肖鹏,肖杨,等.微生物岩土技术及其应用研究新进展[J].土木与环境工程学报(中英文),2019,41(1):1-14.
    [6]
    孙道胜,许婉钰,刘开伟,等.MICP在建筑领域中的应用进展[J].材料导报,2021,35(11):11084-11091.
    [7]
    王欣文,苏超.产脲酶微生物矿化修复铜污染溶液效果研究[J].环境工程,2023,41(增刊2):651-655,639.
    [8]
    吴跃东,闾文,岳昌盛,等.钢渣碳酸化及微生物矿化提升技术的理论研究与应用探索[J].环境工程:1-8[2023-10-22

    ]. https://kns.cnki.net/kcms2/detail/11.2097.X.20230802.1212.004.html.
    [9]
    赵晓婉,吕进,王梅花,等.微生物及水泥固化砂土的力学特性对比试验研究[J].工业建筑,2020,50(12):15-18

    ,49.
    [10]
    梁仕华,戴君,李翔,等.不同固化方式对微生物固化砂土强度影响的研究[J].工业建筑,2017,47(2):82-86.
    [11]
    徐宏殷,练继建,闫玥.多试验因素耦合下 MICP 固化砂土的试验研究[J]. 天津大学学报(自然科学与工程技术版),2020,53(5):517-526.
    [12]
    PAASSEN L A V, GHOSE R, LINDEN T J M V D, et al. Quantifying biomediated ground improvement by ureolysis:large-scale biogrout experiment[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(12):1721-1728.
    [13]
    BURBANK M B, WEAVER T J, GREEN T L, et al. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils[J]. Geomicrobiology Journal, 2011, 28(4):301-312.
    [14]
    周杨,张家铭,朱纪康,等.基于原生微生物 MICP 的土体加固试验研究[J].长江科学院院报,2022,39(5):132-139.
    [15]
    段宇,徐国宾,杨德锋,等.MICP矿化产物中钙离子利用率的影响因素及微观物相分析[J].化工进展, 2019, 38(5):8.
    [16]
    刘建兴,李金柱,谢新宇,等.MICP固化淤泥土的强度试验研究[J].低温建筑技术,2020,42(5):17-20.
    [17]
    刘汉龙,马国梁,肖杨,等.微生物加固岛礁地基现场试验研究[J].地基处理,2019,1(1):26-31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (58) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return