Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Xi, WU Shan-shan, LU Ke-ding. DEVELOPMENT OF AN EVALUATION SYSTEM FOR ASSESSING CONSTRUCTION LEVEL IN OPERATION OF MUNICIPAL SOLID WASTE COMPREHENSIVE TREATMENT PARK FOR ZERO-WASTE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 136-140,15. doi: 10.13205/j.hjgc.202102022
Citation: WANG Shuqiao, YUAN Jingzhou, GUO Jinghan, ZHANG Dingchao, HAN Mengfei, GE Yuxuan, GENG Yaxian, WANG Xin. DESORPTION OF SOIL BENZENE SERIES CONTAMINANTS USING ELECTROMAGNETIC FIELD SIMULATED MICROWAVES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 190-198. doi: 10.13205/j.hjgc.202403024

DESORPTION OF SOIL BENZENE SERIES CONTAMINANTS USING ELECTROMAGNETIC FIELD SIMULATED MICROWAVES

doi: 10.13205/j.hjgc.202403024
  • Received Date: 2023-02-20
    Available Online: 2024-05-31
  • Microwave thermal desorption of organic contaminants from soil has gained much attention due to its high efficiency and cleanliness. In recent years, most of the microwave soil thermal desorption research devices are converted from household microwave ovens, and cannot meet the high power requirement for the practical application of microwave thermal desorption, high-precision temperature control, and other conditions. Therefore, in this paper, o-xylene in benzene was chosen as the target pollutant, the self-matched contaminated soil was used as the sample, a self-made microwave thermal desorption device was used as the platform for the experiments, and single-factor influence experiments were conducted for the process conditions such as microwave power, microwave heating duration, and soil moisture content, etc. Meanwhile, a microwave heating soil model was constructed, the same conditions were set, and the matching results were obtained. The model was also used to speculate the hypothesis of other single-factor influence experiments. The experimental and simulation results showed that the optimal power of microwave thermal desorption of soil was 1600 W, the thermal desorption time was 27 min, the water content was 17%, and it was presumed that the best removal rate of o-xylene was achieved when the sample was placed near the center of the heating chamber.
  • [1]
    陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692.
    [2]
    王世晗. 有机污染土壤微波处理实验研究与设备设计[D]. 北京:北京化工大学, 2019.
    [3]
    ABBAS S Z, RAFATULLAH M, CHEN M Y, et al. Recent advances in soil microbial fuel cells for soil contaminants remediation[J]. Chemosphere, 2021, 272:129691-129702.
    [4]
    WANG H M, XING L Q, ZHANG H H, et al. Key factors to enhance soil remediation by bioelectro chemical systems (BESs):a review[J]. Chemical Engineering Journal, 2021, 419:129600-129610.
    [5]
    SELVAKUMAR R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils:a review[J]. Journal of Environmental Radioactivity, 2018, 192:592-603.
    [6]
    车凯, 韩忠阁, 郁金星, 等.绝缘油污染土壤微波脱附试验[J]. 环境工程, 2022, 40(2):127-131

    ,138.
    [7]
    胡岚, 沈燕飞. 有机毒物污染土壤的淋洗化学修复技术研究[J]. 环境科技, 2013, 26(4):28-32.
    [8]
    陈红云, 卿晋武, 蔡晓鲜, 等. 微生物耦合化学技术修复石油烃土壤污染研究进展[J]. 应用与环境生物学报, 2023, 29(2):484-494.
    [9]
    谢承昊, 高立华, 湛文龙, 等. 微波场下粉煤灰/电石渣负载Na2O协同脱硫脱硝[J]. 环境工程, 2022, 40(2):81-87.
    [10]
    JACOB J, CHIA L H F, BOEY F Y. Thermal and non-thermal interaction of microwave radiation with materials[J]. Journal of Materials Science, 1995, 30(21):5321-5327.
    [11]
    唐龙飞. 煤炭微波脱硫中有机硫形态迁移规律及微波非热效应研究[D]. 徐州:中国矿业大学, 2020.
    [12]
    FALCIGLIA P P, MALARBI D, MADDALENA R, et al. Remediation of Hg-contaminated marine sediments by simultaneous application of enhancing agents and microwave heating (MWH)[J]. Chemical Engineering Journal, 2017, 321:1-10.
    [13]
    FALCIGLIA P P, MANCUSO G, SCANDURA P, et al. Effective decontamination of low dielectric hydrocarbon-polluted soils using microwave heating:experimental investigation and modelling for in situ treatment[J]. Separation and Purification Technology, 2015, 156:480-488.
    [14]
    KOSTAS E T, BENEROSO D, ROBINSONR J P. The application of microwave heating in bioenergy:a review on the microwave pre-treatment and upgrading technologies for biomass[J]. Renewable and Sustainable Energy Reviews, 2017, 77:12-27.
    [15]
    LUO H, WANG H, KONG L Z, et al. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 2019, 377:341-348.
    [16]
    王星. 微波修复挥发性有机物污染土壤技术应用及机理研究[D]. 石家庄:河北科技大学, 2019.
    [17]
    谷兴家. 矿物油污染土壤微波热脱附实验研究[D]. 保定:华北电力大学, 2021.
    [18]
    SUN S, SU Y H, CHEN S Q, et al. Bioremediation of oil-contaminated soil:exploring the potential of endogenous hydrocarbon degrader Eterobacter Sp. SAVR S-1[J]. Applied Soil Ecology, 2022, 173:104387.
    [19]
    ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, (254/255):228-235.
    [20]
    PETR K, FRANTISEK K, MILAN H. Microwave-enhanced thermal desorption of polyhalogenated biphenyls from contaminated soil[J]. Journal of Environmental Engineering, 2010, 136(3):295-300.
    [21]
    唐金华. 多环芳烃污染土壤的微波修复技术研究[D]. 江苏:南京农业大学, 2014.
    [22]
    JUNIOR I P, MARTINS A L, ATAIDE C H, et al. Microwave drying remediation of petroleum-contaminated drill cuttings[J]. Journal of Environmental Management, 2017, 196:659-665.
    [23]
    龙飞. 石油污染土壤的微波修复技术研究[D]. 石家庄:河北科技大学, 2020.
    [24]
    周翠红, 王世晗, 黄艺礼. 微波辅助硝基苯污染土壤修复模拟及工艺参数优化[J]. 环境科技, 2019, 32(2):6-11.
    [25]
    YUAN S H, TIAN M, LU X H. Microwave remediation of soil contaminated with hexachlorobenzene[J]. Journal of Hazardous Materials, 2006, 137(2):878-885.
    [26]
    王棣. 微波辅助催化氧化协同臭氧处理苯系物的研究[D]. 上海:上海第二工业大学, 2020.
    [27]
    张麟君, 李凯荣, 张晓阳. 陕北黄土高原不同植物对石油污染物的吸收与积累[J]. 西北农林科技大学学报(自然科学版), 2013, 41(8):110-116.
    [28]
    王祺. 基于COMSOL的陶瓷结合剂磨具微波烧结仿真研究[D]. 沈阳:沈阳航空航天大学, 2019.
    [29]
    何帔雨. 高压直流输电接地极监测参数计算、检测及预警模型研究[D]. 昆明:云南大学, 2020.
    [30]
    周明长, 李少甫. 基于数值仿真的多馈微波加热温度控制系统[J]. 微波学报, 2019, 35(5):92-96.
    [31]
    周明长. 多馈口微波加热数值仿真及温度控制研究[D]. 绵阳:西南科技大学, 2020.
    [32]
    TAMANG S, ARAVINDAN S, Joining of dissimilar metals by microwave hybrid heating:3D numerical simulation and experiment[J]. International Journal of Thermal Sciences, 2022, 172:107281.
    [33]
    FENG S Y, LIU J D, GAO B, et al. The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane[J]. Journal of Environmental Chemical Engineering, 2021, 9(2):105105.
    [34]
    陈维墉, 胡林潮, 朱雷鸣, 等. 石油烃污染土壤活性碳增强微波热修复及菌剂深度降解试验研究[J]. 土木与环境工程学报, 2021, 43(4):195-201.
    [35]
    付毕安. 微波场中典型电/磁损耗含湿矿物类多孔介质内部耦合传输机制研究[D]. 北京:北京交通大学, 2019.
    [36]
    高勇. 典型材料高功率下微波介电特性研究[D]. 西安:西安电子科技大学, 2019.
    [37]
    刘松涛, 谷兴家, 贾文波, 等. 绝缘油污染土壤微波热脱附的影响因素[J]. 环境工程学报, 2021, 15(12):3974-3981.
    [38]
    FALCIGLIA P P, GIUSEPPE U, FEDERICO G. A. Microwave heating remediation of soils contaminated with diesel fuel[J]. Journal of Soil & Sediments, 2013, 13(8):1396-1407.
    [39]
    李宁, 刘秉国, 张利波, 等. 废旧三元锂离子电池正极材料的微波吸收特性[J]. 工程科学学报, 2022,44(7):1222-1230.
    [40]
    杨康. 红外辅助微波热处理苯类污染土壤实验研究与装备设计[D]. 北京:北京石油化工学院, 2021.
  • Relative Articles

    [1]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [2]ZHANG Heng, LI Yao, ZHAO Cong, HUANG Tao, PENG Daoping, CHEN Xing. PHOSPHORUS REMOVAL PERFORMANCE AND MECHANISM IN WATER OF ZINC IRON HYDROTALCITE MODIFIED RED MUD[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 57-65. doi: 10.13205/j.hjgc.202402007
    [3]JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027
    [4]ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
    [5]ZHENG Xingcan, XIA Qiongqiong, SHANG Wei, SUN Yongli, LI Pengfeng. CONSIDERATIONS AND KEY POINTS OF TECHNICAL SPECIFICATION FOR RESOURCE AND ENERGY RECOVERY FROM MUNICIPAL WASTEWATER (T/CUWA 70052-2023)[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 174-180. doi: 10.13205/j.hjgc.202309021
    [6]KONG Jia, SHEN Bo-xiong, KONG Wen-wen, DAN Kai-xuan. EXPERIMENTAL STUDY ON CO2 FIXATION COUPLED WITH WASTEWATER PURIFICATION BY CHLORELLA VULGARIS UNDER DIFFERENT AMMONIUM CONCENTRATIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 9-17,94. doi: 10.13205/j.hjgc.202205002
    [7]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [8]ZHANG Tian, JIANG Bo, XING Yi, YA Hao-bo. REVIEW ON DEVELOPMENT OF ADSORPTION METHODS TO REMOVE ANTIBIOTICS FORM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 29-39. doi: 10.13205/j.hjgc.202103005
    [9]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [10]QIU Fu-guo, LIU Yu-jun, ZHAO Shuang, FU Kun-ming, CAO Xiu-qin. ADSORPTION PROPERTIES OF ORGANIC PHOSPHORUS IN WATER BY WATER TREATMENT RESIDUAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 40-46. doi: 10.13205/j.hjgc.202101005
    [11]LIANG Jia-qi, LV Yuan, LU Yin, WANG Xiang-hui, ZHENG min, XU Kang-ning. RECOVERY OF AMMONIUM AND PHOSPHATE FROM CORN PROCESSING WASTEWATER USING MAGNETIC MgO-BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 89-94. doi: 10.13205/j.hjgc.202009015
    [12]WANG Ruo-fan, WANG Wen-fei, WANG Yu-jun, SHENG Yang, YANG Si-yu, LI Hai-chao. SPECIFIC SELECTION OF FILLERS OF SUBSURFACE FLOW WETLAND AND THE REMOVAL EFFECT OF PO43--P[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 87-91. doi: 10.13205/j.hjgc.202003015
    [13]LI Jing, BAO Dong-jie, WANG Xiang-ning, LIU Zhan-meng. ADSORPTION PROPERTIES AND MECHANISM OF A MAGNETIC NANOCOMPOSITE ADSORBENT (PFM) FOR COPPER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 84-88. doi: 10.13205/j.hjgc.202005015
    [14]YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007
    [15]DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
    [16]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [17]LI Rong, XU Duo, WEI Jie, WANG Dong-tian. PREPARATION OF ADSORBENT BY COMBINED DRINKING WATER TREATMENT SLUDGE AND POWDERED ACTIVATED CARBON AND ITS AMMONIUM REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 95-100,112. doi: 10.13205/j.hjgc.202009016
    [18]YAN Bing-gang, HU Jia-wei, JIANG Xiao-qian, YU Yang, GUAN Yun-tao. ADSORPTION PERFORMANCE AND MECHANISM OF PHOSPHATE AND PHYTIC ACID ON MAGNESIUM-LADEN BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 94-101. doi: 10.13205/j.hjgc.202006015
    [19]LIU Ling-yan, CHEN Shuang-rong, SONG Xue-yan, WANG Sheng-nan, YU Jun-xia, LU Yi-feng. RESEARCH PROGRESS IN REMOVAL OF PHOSPHATE FROM WATER BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 91-97. doi: 10.13205/j.hjgc.202011015
    [20]Lu Yanqin Zhu Li He Zhaoju Zhang Hua Li Xiaoxia, . PHOSPHORUS ADSORPTION FROM WASTEWATER BY IRON-OXIDE-COATED-ZEOLITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 48-52. doi: 10.13205/j.hjgc.201504011
  • Cited by

    Periodical cited type(1)

    1. 张晓涛,刘雍,周思思,邱盛贵,曾维波. 透水砖吸附水体污染物研究进展. 砖瓦. 2024(12): 38-40 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 81.1 %META: 81.1 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.2 %其他: 25.2 %上海: 0.9 %上海: 0.9 %九江: 5.4 %九江: 5.4 %南京: 1.8 %南京: 1.8 %南平: 0.9 %南平: 0.9 %台州: 5.4 %台州: 5.4 %合肥: 0.9 %合肥: 0.9 %大同: 1.8 %大同: 1.8 %天津: 1.8 %天津: 1.8 %常德: 0.9 %常德: 0.9 %张家口: 1.8 %张家口: 1.8 %成都: 0.9 %成都: 0.9 %扬州: 0.9 %扬州: 0.9 %昆明: 0.9 %昆明: 0.9 %晋城: 1.8 %晋城: 1.8 %杭州: 2.7 %杭州: 2.7 %沈阳: 2.7 %沈阳: 2.7 %漯河: 3.6 %漯河: 3.6 %烟台: 2.7 %烟台: 2.7 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 20.7 %芒廷维尤: 20.7 %衢州: 2.7 %衢州: 2.7 %贵阳: 0.9 %贵阳: 0.9 %运城: 4.5 %运城: 4.5 %遵义: 0.9 %遵义: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 2.7 %重庆: 2.7 %长沙: 0.9 %长沙: 0.9 %鞍山: 1.8 %鞍山: 1.8 %其他上海九江南京南平台州合肥大同天津常德张家口成都扬州昆明晋城杭州沈阳漯河烟台石家庄芒廷维尤衢州贵阳运城遵义郑州重庆长沙鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(4) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return