Citation: | GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004 |
[1] |
GALLAGHER K S, ZHANG F, ORVIS R, et al. Assessing the Policy gaps for achieving China’s climate targets in the Paris Agreement[J]. Nature Communications, 2019, 10(1): 1256.
|
[2] |
LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth & Environment, 2022, 3(2): 141-155.
|
[3] |
ZHAO X, JIN X K, GUO W, et al. China’s urban methane emissions from municipal wastewater treatment plant[J]. Earth’s Future, 2019, 7(4): 480-490.
|
[4] |
SONG C, ZHU J J, WILLIS J L, et al. Methane emissions from municipal wastewater collection and treatment systems[J]. Environmental Science & Technology, 2023, 57(6): 2248-2261.
|
[5] |
ZHANG J, XIAO K, HUANG X. Full-scale MBR applications for leachate treatment in China: practical, technical, and economic features[J]. Journal of Hazardous Materials, 2020, 389: 122138.
|
[6] |
BOSMANS A, VANDERREYDT I, GEYSEN D, et al. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review[J]. Journal of Cleaner Production, 2013, 55: 10-23.
|
[7] |
马小茜,张哲,刘超,等.生活垃圾焚烧厂渗沥液厌氧氨氧化脱氮效能及微生物机理分析[J].环境工程,2021,39(11):110-118.
|
[8] |
ZHANG L Y, BAI H, ZHANG Y W, et al. Life cycle assessment of leachate treatment strategies[J]. Environmental Science & Technology, 2021, 55(19): 13264-13273.
|
[9] |
YANG G, ZHANG Q, ZHAO Z, et al. How does the "Zero-waste City" strategy contribute to carbon footprint reduction in China?[J]. Waste Management, 2023, 156: 227-235.
|
[10] |
CHEN Q W, LAI X, GU H H, et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China[J]. Journal of Cleaner Production, 2022, 369: 133342.
|
[11] |
XIAN C F, GONG C, LU F, et al. The evaluation of greenhouse gas emissions from sewage treatment with urbanization: understanding the opportunities and challenges for climate change mitigation in China’s low-carbon pilot city, Shenzhen[J]. Science of the Total Environment, 2023, 855: 158629.
|
[12] |
ZHOU X X, YANG F, YANG F, et al. Analyzing greenhouse gas emissions from municipal wastewater treatment plants using pollutants parameter normalizing method:a case study of Beijing[J]. Journal of Cleaner Production, 2022, 376: 134093.
|
[13] |
BIAN R X, CHEN J H, ZHANG T X, et al. Influence of the classification of municipal solid wastes on the reduction of greenhouse gas emissions: a case study of Qingdao City, China[J]. Journal of Cleaner Production, 2022, 376: 134275.
|
[14] |
翟明洋,周长波,李晟昊,等.污水处理行业温室气体核算模型开发及减排潜力分析[J].中国环境管理,2023,14(6):57-64.
|
[15] |
付博,林向宇,章雨柔,等.基于生命周期评价的东南沿海农村生活污水处理环境影响研究[J].环境科学学报,2024,44(1):451-461.
|
[16] |
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. 2019.
|
[17] |
VASILAKI V, MASSARA T, STANCHEV P, et al. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: a critical review[J]. Water Research, 2019, 161: 392-412.
|
[18] |
VALKOVA T, PARRAVICINI V, SARACEVIC E, et al. A method to estimate the direct nitrous oxide emissions of municipal wastewater treatment plants based on the degree of nitrogen removal[J]. Journal of Environmental Management, 2021, 279: 111563.
|
[19] |
YAO H, GAO X Y, GUO J B, et al. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies: a critical review[J]. Environmental Pollution, 2022,314: 120295.
|
[20] |
WU Z P, DUAN H R, LI K L, et al. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations[J]. Environmental Research, 2022, 214: 113818.
|
[21] |
MAAVARA T, LAUERWALD R, LARUELLE G G, et al. Nitrous oxide emissions from inland waters: are IPCC estimates too high?[J]. Global change biology, 2019, 25(2): 473-488.
|
[22] |
ALIYU G, LUO J, DI H J, et al. Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates[J]. Science of the Total Environment, 2019, 669: 547-558.
|
[23] |
中国城镇供水排水协会.城镇水务系统碳核算与减排路径技术指南[M].北京:中国建筑工业出版社,2022.
|
[24] |
MAKTABIFARD M, ZABOROWSKA E, MAKINIA J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17: 655-689.
|
[25] |
陈燕.厌氧—好氧工艺处理垃圾焚烧厂渗滤液的效果分析及其碳排放核算[D].无锡:江南大学,2015.
|
[26] |
TODT D, DRSCH P. Mechanism leading to N2O production in wastewater treating biofilm systems[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15: 355-378.
|
[27] |
MAO W L, YANG R L, SHI H Q, et al. Identification of key water parameters and microbiological compositions triggering intensive N2O emissions during landfill leachate treatment process[J]. Science of the Total Environment, 2022, 833: 155135.
|
[28] |
LI J M, ZENG W, LIU H, et al. Performances and mechanisms of simultaneous nitrate and phosphate removal in sponge iron biofilter[J]. Bioresource Technology, 2021, 337: 125390.
|
[29] |
WANG J H, ZHANG J, XIE H J, et al. Methane emissions from a full-scale A/A/O wastewater treatment plant[J]. Bioresource Technology, 2011, 102(9): 5479-5485.
|
[30] |
WANG S, LIU Q X, LI J, et al. Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment[J]. Water Research, 2021, 198: 117122.
|
[31] |
OKAMOTO Y, LIENHARD J H. How RO membrane permeability and other performance factors affect process cost and energy use: a review[J]. Desalination, 2019, 470: 114064.
|
[32] |
LIAO X W, TIAN Y J, GAN Y W, et al. Quantifying urban wastewater treatment sector’s greenhouse gas emissions using a hybrid life cycle analysis method:an application on Shenzhen city in China[J]. Science of the Total Environment, 2020, 745: 141176.
|
[33] |
LI T Q, LV F, QIU J J, et al. Substance flow analysis on the leachate DOM molecules along five typical membrane advanced treatment processes[J]. Water Research, 2023, 228: 119348.
|
[34] |
付真真.UASB-MBR-NF-RO 处理生活垃圾焚烧厂渗滤液[J].海峡科学,2021(6):79-84.
|
[35] |
杨扬.某生活垃圾焚烧发电厂渗滤液处理工程设计[J].化工管理,2019(10):195-196.
|
[36] |
陈杰,肖诚斌,桂宏桥,等.生活垃圾焚烧发电厂的渗滤液处理工程实例[J].净水技术,2022,41(3):100-103
,109.
|
[37] |
花发奇,唐湘姬.生活垃圾焚烧发电厂渗滤液处理工程实例[J].中国新技术新产品,2018(17):38-39.
|
[38] |
阳灿.预处理+UASB+MBR+NF+RO组合工艺处理垃圾发电厂渗滤液工程实践[J].净水技术,2019,38(2):102-107.
|
[39] |
GUAN Q Y, QU Y H, ZHAI Y J, et al. Enhancement of methane production in anaerobic digestion of high salinity organic wastewater: the synergistic effect of nano-magnetite and potassium ions[J]. Chemosphere, 2023, 318: 137974.
|
[40] |
CHEN L, FANG W, LIANG J S, et al. Biochar application in anaerobic digestion: performances, mechanisms, environmental assessment and circular economy[J]. Resources, Conservation and Recycling, 2023, 188: 106720.
|
[41] |
WANG H, WANG J J, ZHOU M D, et al. A versatile control strategy based on organic carbon flow analysis for effective treatment of incineration leachate using an anammox-based process[J]. Water Research, 2022, 215: 118261.
|
[1] | DUAN Huabo, ZHOU Jijiao, ZHAO Nana, LAN Xiaofeng, ZHENG Ruiying, FU Xingrui, CHEN Ying, SUN Jianming. A DIGITAL MANAGEMENT PLATFORM FOR SUPPORTING MUNICIPAL SOLID WASTE CLASSIFICATION: AN APPLICATION CASE OF HUZHOU, ZHEJIANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 230-238. doi: 10.13205/j.hjgc.202402027 |
[2] | QIAN Xu, CHEN Pengpeng, XIE Pengcheng, GE Chunling, LUO Wei. AN INTELLIGENT CLASSIFICATION INFRASTRUCTURE SYSTEM FOR COMMUNITY SOLID WASTE: DESIGN AND IMPLEMENTING SCHEME[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 239-246. doi: 10.13205/j.hjgc.202402028 |
[3] | KOU Xingxia, PENG Zhen, ZHANG Meigen, MIAO Shiguang, CHEN Min, ZHAO Xiujuan. RESEARCH PROGRESS IN URBAN AND REGIONAL-SCALE ATMOSPHERIC INVERSIONS OF CARBON SOURCES AND SINKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 209-217. doi: 10.13205/j.hjgc.202410024 |
[4] | XUAN Gan, TANG Baiyang, LI Yuting, ZHANG Xitong, LIU Weijing, CAO Jiashun, LUO Jingyang, FENG Qian. RESEARCH PROGRESS ON MONITORING METHODS OF DIRECT CARBON EMISSIONS FROM URBAN SEWAGE COLLECTING SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 13-21. doi: 10.13205/j.hjgc.202411002 |
[5] | LU Qian, WU Yonggui, WANG Yiran, HAN Yiqin. ANALYSIS OF DYNAMIC CHANGES IN CARBON EMISSIONS OF UNDERGROUND RECLAIMED WATER PLANTS IN OPERATION PHASE IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 106-114. doi: 10.13205/j.hjgc.202411012 |
[6] | MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001 |
[7] | XIA Qiongqiong, ZHENG Xingcan, GU Miao, LI Mai, SHANG Wei, TIAN Yongying, HUANG Haiwei, ONG Say Leong. CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 240-246. doi: 10.13205/j.hjgc.202409023 |
[8] | XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023 |
[9] | WANG Qinyi, SHENG Yangyue, SONG Ningning, ZHANG Junqi, ZENG Songxi, QIAN Xiaoyong, QIU Kaipei, LIU Qizhen. PROGRESS OF CH4 AND N2O MONITORING IN FULL-SCALE WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 51-60. doi: 10.13205/j.hjgc.202310008 |
[10] | NING Lizhe, ZHANG Zhe, CAI Bofeng, ZHOU Caihua. RESEARCH ON CHINA'S REGIONAL AND PROVINCIAL ELECTRICITY GHG EMISSION FACTORS IN 2020[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 222-228. doi: 10.13205/j.hjgc.202303030 |
[11] | CHEN Biaohua, TIAN Meng, XU Ruinian. GREENHOUSE GAS N2O EMISSIONS IN CHEMICAL PRODUCTION AND INDUSTRIAL ABATEMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 82-90. doi: 10.13205/j.hjgc.202310011 |
[12] | WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024 |
[13] | WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028 |
[14] | ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004 |
[15] | QIU Dezhi, CHEN Chun, GUO Li, LIU Dan, MA Jiahui, LEI Miao, LI Tianning, XU Keke, YAN Xu. CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 116-122. doi: 10.13205/j.hjgc.202206015 |
[16] | YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016 |
[17] | YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017 |
[18] | REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022 |
[19] | SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011 |
[20] | WANG Xiao-cheng, GUO Ying, YAN Kai-hong. TREATMENT OF DOMESTIC WASTE BY ULTRA-HIGH TEMPERATURE SPONTANEOUS HEATING AEROBIC COMPOSTING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 183-189. doi: 10.13205/j.hjgc.202010029 |