Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YIN Yalun, HOU Jingming, LI Xinyi, LUAN Guangxue, GAO Xujun, WANG Tian, SHEN Jian, QIAO Mengxi. APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 82-90. doi: 10.13205/j.hjgc.202404010
Citation: YIN Yalun, HOU Jingming, LI Xinyi, LUAN Guangxue, GAO Xujun, WANG Tian, SHEN Jian, QIAO Mengxi. APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 82-90. doi: 10.13205/j.hjgc.202404010

APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT

doi: 10.13205/j.hjgc.202404010
  • Received Date: 2022-10-21
    Available Online: 2024-06-01
  • It is very important to carry out the risk assessment of rainstorm-induced inundation in urban areas for inundation regulation and urban security development. This study took the 310 km2 main urban area of Yinchuan as an example, to establish an efficient and high-resolution coupled GAST-SWMM model of urban surface inundation and drainage process of underground pipe network based on GPU acceleration technology. The model was verified by the measured information of inundation points. The inundation location and risk level before and after the planning of the study area were simulated respectively under the condition of 24-hour rainstorms with a return period of 20 years and 30 years. The inundation reduction was analyzed and the inundation risk map was drawn. The results showed that compared with the measured values, the simulation error of the model was less than 6%, and the simulation accuracy was higher. After planning, compared with the situation before planning, the average value of the peak water area reduction rate and peak water depth reduction rate reached 41.6% and 45.03%, respectively, and the average value of the peak water depth reduction rate reached 51.74% and 56.05%, respectively, and the high-risk water points were all reduced to medium risk and low risk. The coupled numerical model has a good application effect in the large-scale urban rainstorm-induced inundation risk assessment, and the research results have important reference value for the prevention and elimination of rainstorm-prone inundation points in Yinchuan.
  • [1]
    扈海波. 城市暴雨积涝灾害风险突增效应研究进展[J]. 地理科学进展, 2016, 35(9):1075-1086.
    [2]
    李昌文,黄艳,严凌志.变化环境下长江流域超标准洪水灾害特点研究[J].人民长江,2022,53(3):29-43.
    [3]
    侯精明, 康永德, 李轩, 等. 西安市暴雨致涝成因分析及对策[J]. 西安理工大学学报, 2020, 36(3):269-274.
    [4]
    张鑫,刘康琦,王克树,等.2021年全球典型极端降雨灾害事件对比及综合防御[J].人民长江,2022,53(8):23-29

    ,35.
    [5]
    赵广英,李晨,刘淑娟.城市内涝问题的规划改善途径研究:以湖南省为例[J]. 现代城市研究, 2016(12):51-61.
    [6]
    胡伟贤,何文华,黄国如.城市雨洪模拟技术研究进展[J]. 水科学进展, 2010, 21(1):137-144.
    [7]
    宋晓猛,张建云,王国庆,等.变化环境下城市水文学的发展与挑战:Ⅱ.城市雨洪模拟与管理[J].水科学进展, 2014, 25(5):752-764.
    [8]
    李娜,孟雨婷,王静,等.低影响开发措施的内涝削减效果研究:以济南市海绵试点区为例[J].水利学报, 2018,49(12):1489-1502.
    [9]
    侯精明,郭凯华,王志力,等.设计暴雨雨型对城市内涝影响数值模拟[J]. 水科学进展, 2017, 28(6):820-828.
    [10]
    马超,赵凯,齐文超,等.基于示踪方法的沿海城市内涝防灾方案研究[J].水资源保护,2022,38(1):91-99.
    [11]
    吕金燕,沈旭,赵梦阳.基于SWMM模型的城市排水能力与内涝风险评估[J].市政技术,2022,40(7):237-241.
    [12]
    张菲菲,谭琳珊,赵强强,等.基于水动力模型的城市内涝灾害研究:以宁波市白鹤社区为例[J].自然灾害学报,2021,30(6):209-218.
    [13]
    张爽,杨翠巧,邵薇薇,等.基于Mike Urban的高度城市化地区内涝交通风险分析[J].水利水电技术,2021,52(11):10-18.
    [14]
    SMITH L S,LIANG Q. Towards a generalised GPU/CPU shallow-flow modelling tool[J]. Computers & Fluids,2013,88(12):334-343.
    [15]
    ZHANG L L, LIANG Q H, WANG Y L, et al. A robust coupled model for solute transport driven by severe flow conditions[J]. Journal of Hydro-Environment Research,2015, 9(1): 49-60.
    [16]
    HOU J M, LIANG Q H, SIMONS F, et al. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment[J]. Advances in Water Resources, 2013, 52(2): 107-131.
    [17]
    HOU J M, LIANG Q H, LI Z B, et al. Numerical error control for second-order explicit TVD scheme with limiters in advection simulation[J]. Computers & Mathematics with Applications, 2015, 70(9):2197-2209.
    [18]
    HOU J M, LIANG Q H, ZHANG H B, et al. An efficient unstructured MUSCL scheme for solving the 2D shallow water equations[J]. Environmental Modelling & Software, 2015, 66: 131-152.
    [19]
    HOU J M,SIMONS F,MAHGOUB M,et al. A robust well-balanced model on unstructured grids for shallow waterflows with wetting and drying over complex topography[J]. Computer Methods in Applied Mechanics & Engineering,2013,257(15):126-149.
    [20]
    LIANG Q H,XIA X L,HOU J M. Catchment-scale high-resolution flash flood simulation using the GPU-based Technology[J]. Procedia Engineering,2016,154(6):975-981.
    [21]
    姚焕玫,卢燕南,王石.基于SWMM模型的南宁市海绵城市建设优化模拟[J].环境工程,2019,37(11):102-109

    ,188.
    [22]
    刘耀台. 城市排水管网模拟评价与径流控制方案优化[D].哈尔滨:哈尔滨工业大学,2021.
    [23]
    覃钊. 基于SWMM的精细化水文模拟及LID布设研究[D].广州:广东工业大学,2021.
    [24]
    吴俊毅, 秦华鹏. 基于一二维耦合内涝模型的城市道路积水来源量化分析[J]. 北京大学学报(自然科学版), 2021, 57(4):716-722.
    [25]
    栾广学, 侯精明, 郭敏鹏, 等. 海绵改造对城市内涝过程的时空影响分析[J]. 中国防汛抗旱, 2021, 31(10):5-9

    ,41.
    [26]
    何佳琪. 合流制排水管网溢流模拟及优化研究[D].合肥:安徽建筑大学,2017.
    [27]
    聂铁锋. 广州市城区暴雨径流非点源污染负荷核算技术研究[D].广州:华南理工大学,2012.
    [28]
    黄绵松,杨少雄,齐文超,等.固原海绵城市内涝削减效果数值模拟[J].水资源保护,2019,35(5):13-18

    ,39.
    [29]
    冯嘉宝,许欢,王婷.广州城市内涝的分布特征及其模拟[J].广东气象,2023,45(3):1-6.
    [30]
    潘文俊,柳树票,徐嫣,等.基于多维耦合模型的城区内涝模拟及风险评估[J].陕西水利,2022(10):19-22.
  • Relative Articles

    [1]DONG Wei, GENG Lizhi, FEI Bo. RESEARCH ON CHARACTERISTICS AND REACTIVITY OF VOLATILE ORGANIC COMPOUNDS EMISSION FROM A COKING ENTERPRISE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 161-166. doi: 10.13205/j.hjgc.202402019
    [2]WANG Xiaowei, MIN Chaohui, SONG Jun, ZHANG Jinghua, ZHAO Hongbing, CAO Chen, ZHANG Chi, LIU Tianfu, LIU Jingyin, HUANG Xiaoli, CHEN Liang, LIU Xin. EMISSION CHARACTERISTICS AND WHOLE PROCESS CONTROL IMPLEMENTATION PATH FOR VOCs IN RAILWAY TRANSPORTATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 102-111. doi: 10.13205/j.hjgc.202410013
    [3]XIA Qiongqiong, ZHENG Xingcan, GU Miao, LI Mai, SHANG Wei, TIAN Yongying, HUANG Haiwei, ONG Say Leong. CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 240-246. doi: 10.13205/j.hjgc.202409023
    [4]HE Zihao, YI Mengting, ZHONG Qiumeng, LIANG Sai. INFLUENCING FACTORS OF SYNERGY DEGREE FOR INDUSTRIAL POLLUTANT AND CARBON REDUCTIONS IN CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 206-214. doi: 10.13205/j.hjgc.202401027
    [5]LIU Yanbo, ZHANG Zhaohan, LIU Guohong, SONG Yanfang, LI Jiannan, DUAN Jinhao, FENG Yujie. CONSTRUCTION OF A COMPREHENSIVE IMPACT ASSESSMENT METHOD OF SEWAGE TREATMENT TECHNOLOGY BASED ON LCA-AHP MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 52-59. doi: 10.13205/j.hjgc.202412007
    [6]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [7]FEI Bo, BU Mengya, ZHANG Gangfeng. RESEARCH ON VOCs EMISSION CHARACTERISTICS AND OZONE FORMATION POTENTIAL OF TYPICAL PETROCHEMICAL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 172-178. doi: 10.13205/j.hjgc.202305023
    [8]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [9]ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026
    [10]Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
    [11]LIU Guohua, LI Qinyu, XU Xianglong, QI Lu, WANG Hongchen. RESEARCH PROGRESS OF IFAS PROCESS FOR WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 214-224. doi: 10.13205/j.hjgc.202202032
    [12]QIU Dezhi, CHEN Chun, GUO Li, LIU Dan, MA Jiahui, LEI Miao, LI Tianning, XU Keke, YAN Xu. CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 116-122. doi: 10.13205/j.hjgc.202206015
    [13]ZHOU Yi-xin, LI Ji, WANG Yan, ZHENG Kai-kai, WANG Xiao-fei, ZHI Yao. REASON ANALYSIS AND IMPROVEMENT MEASURES FOR LOW POLLUTANTS CONCENTRATION OF INFLUENT WATER OF URBAN SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 25-30. doi: 10.13205/j.hjgc.202112004
    [14]XIE Bing-kun, JIANG Zu-ming, ZENG Jun, JI Long-jie, LIU Peng, LI Shu-peng, HAN Jin, TIAN Qi-dong. ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 173-178,187. doi: 10.13205/j.hjgc.202108024
    [15]FANG Li, LIU Ji-ye, NIE Lei, HE Li-juan, WANG Hai-lin. VOCs EMISSION CHARACTERISTICS AND OZONE IMPACT ANALYSIS OF TYPICAL AUTOMOBILE REPAIR ENTERPRISES IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 146-150,155. doi: 10.13205/j.hjgc.202010023
    [16]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
    [17]LI Jia-ju, ZHENG Xing-can, LI Peng-feng, LI Ji, HE Ling-jun, SUI Ke-jian, LV Zhen, SUN Yong-li, WANG Yan, YANG Min, GAO Chen-chen, GUO Ya-qiong, CHEN Tian-fang, ZHANG Yue, WANG Yi-da. RESEARCH SCHEME AND PROBLEMS IDENTIFICATION OF URBAN SEWAGE TREATMENT PLANTS BASED ON NEW LOCAL STANDARD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 13-18. doi: 10.13205/j.hjgc.202007002
    [18]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [19]LI Ji, WANG Yan, LUO Guo-bing, LI Bing-bing. OPERATION EVALUATION OF URBAN SEWAGE TREATMENT PLANTS IMPLEMENTING GRADE I-A STANDARD AND ANALYSIS ON EMPASSIS AND DIFFICULTIES IN UPGRADING THE STANDARD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 1-12. doi: 10.13205/j.hjgc.202007001
    [20]HUANG Chou, WANG Yan, ZHENG Kai-kai, WANG Shuo, LI Ji. THE INFLUENCING FACTORS AND OPTIMAL OPERATION OF PHOSPHORUS REMOVAL IN URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 58-65. doi: 10.13205/j.hjgc.202007009
  • Cited by

    Periodical cited type(8)

    1. 王程程,李倩,赵曙光,宋乐山,刘画,张颖,刘思. 含锡锑中间层的铅锑电极的制备及电催化性能研究. 环境工程. 2024(03): 92-98 . 本站查看
    2. 俞佳成,王琴,秦文彬,张宇峰. 三维电极对化工废水中2, 6-二甲基吡啶处理的研究. 现代化工. 2024(08): 180-184 .
    3. 王程程,李磊,宋乐山,张颖,刘思,何超群. 三维电催化氧化法处理含P204废水的试验研究. 工业用水与废水. 2024(04): 31-36 .
    4. 潘海丰,王冰,刘光洲. 三维电极法对废水的处理研究与应用. 辽宁化工. 2023(08): 1185-1188 .
    5. 左煜,王德举,孙晓雪,赵申,王宁. 负载型三维粒子电极在苯胺废水处理中的研究. 能源化工. 2022(04): 77-82 .
    6. 姜帅臣,孙文全,孙永军,周俊. 多金属臭氧催化剂的制备及处理含酚废水的效果. 水处理技术. 2021(11): 42-47 .
    7. 喻海彬,胡文勇,刘静怡,杨哲,沈良辰. 钴金属-有机骨架活化过硫酸钠降解废水中的盐酸土霉素. 环境工程学报. 2020(09): 2506-2514 .
    8. 张娜,朱忻怡,栗崇峻,万佳,孟勇,彭馨. TiO_2-SiO_2/GAC粒子电极的制备及其对氨氮废水去除的探究. 精细化工中间体. 2019(04): 64-69 .

    Other cited types(12)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.9 %FULLTEXT: 20.9 %META: 72.8 %META: 72.8 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.2 %其他: 23.2 %China: 0.3 %China: 0.3 %三亚: 0.3 %三亚: 0.3 %上海: 5.6 %上海: 5.6 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 2.0 %北京: 2.0 %南京: 1.7 %南京: 1.7 %南昌: 0.3 %南昌: 0.3 %台州: 2.6 %台州: 2.6 %合肥: 0.7 %合肥: 0.7 %商洛: 0.3 %商洛: 0.3 %大连: 0.3 %大连: 0.3 %天津: 2.0 %天津: 2.0 %太原: 0.3 %太原: 0.3 %宁波: 0.7 %宁波: 0.7 %安康: 0.3 %安康: 0.3 %宜春: 0.3 %宜春: 0.3 %宿迁: 0.3 %宿迁: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 2.3 %广州: 2.3 %张家口: 0.7 %张家口: 0.7 %徐州: 0.3 %徐州: 0.3 %成都: 3.0 %成都: 3.0 %扬州: 1.3 %扬州: 1.3 %无锡: 0.7 %无锡: 0.7 %昆明: 1.0 %昆明: 1.0 %杭州: 3.3 %杭州: 3.3 %武汉: 1.7 %武汉: 1.7 %沈阳: 1.0 %沈阳: 1.0 %洛杉矶: 0.3 %洛杉矶: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 1.0 %深圳: 1.0 %温州: 0.7 %温州: 0.7 %湖州: 0.3 %湖州: 0.3 %漯河: 3.0 %漯河: 3.0 %益阳: 0.7 %益阳: 0.7 %盐城: 0.7 %盐城: 0.7 %福州: 0.3 %福州: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 17.2 %芒廷维尤: 17.2 %芝加哥: 2.0 %芝加哥: 2.0 %西双版纳: 0.3 %西双版纳: 0.3 %西宁: 3.0 %西宁: 3.0 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.3 %赣州: 0.3 %运城: 1.7 %运城: 1.7 %遵义: 0.3 %遵义: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 5.0 %重庆: 5.0 %金华: 0.7 %金华: 0.7 %钦州: 0.7 %钦州: 0.7 %长沙: 2.0 %长沙: 2.0 %鹰潭: 0.3 %鹰潭: 0.3 %其他China三亚上海保定兰州北京南京南昌台州合肥商洛大连天津太原宁波安康宜春宿迁常州常德广州张家口徐州成都扬州无锡昆明杭州武汉沈阳洛杉矶淮安深圳温州湖州漯河益阳盐城福州聊城芒廷维尤芝加哥西双版纳西宁西安贵阳赣州运城遵义郑州重庆金华钦州长沙鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads(8) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return