Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Lei, LI Xuemei, WEI Yuan, FENG Chenglian, SU Hailei, LIU Yuxian, ZHAO Yanan, LI Feilong, GUO Fen, ZHANG Yuan, XUE Jingchuan. ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 91-99. doi: 10.13205/j.hjgc.202404011
Citation: ZHANG Lei, LI Xuemei, WEI Yuan, FENG Chenglian, SU Hailei, LIU Yuxian, ZHAO Yanan, LI Feilong, GUO Fen, ZHANG Yuan, XUE Jingchuan. ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 91-99. doi: 10.13205/j.hjgc.202404011

ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER

doi: 10.13205/j.hjgc.202404011
  • Received Date: 2023-02-12
    Available Online: 2024-06-01
  • Parabens are widely used as preservatives in the production of food, cosmetics, pharmaceuticals, and industrial products. However, as a group of emerging endocrine disruptor, parabens can be bioaccumulated in aquatic organisms, thus posing threat to the ecosystem and human health. In this study, we investigated the occurrence and distribution of parabens in the surface water and sediments of the Dongjiang River, and assessed the potential ecological risk it may pose. The results showed that the concentrations of total parabens in the surface water ranged from 1.17 ng/L to 17.07 ng/L. The concentrations of parabens in sediments ranged from 19.0 ng/g to 765.959 ng/g. Meanwhile, the average content of parabens in the water column and sediment of Xizhijiang (XZJ) was higher, 3.62 ng/L and 155.99 ng/g, respectively. Among the parabens and metabolites measured, MeP and 4-HB were the respective major parent compound and metabolite. The levels of different types of parent parabens also showed variability in different regions, which may be related to different consumption habits of food, drugs, and cosmetics. The risk assessment showed that the ecological risk of parabens in the Dongjiang River was low, but long-term exposure may cause greater harmful effects on the ecosystem. The results of the study provide scientific support for the risk assessment and environmental management of parabens.
  • [1]
    SONI M G, CARABIN I G, BURDOCK G A. Safety assessment of esters of p-hydroxybenzoic acid (Parabens)[J]. Food and Chemical Toxicology, 2005, 43(7):985-1015.
    [2]
    LI W H, SHI Y L, GAO L H, et al. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant[J]. Journal of Hazardous Materials, 2015,300:29-38.
    [3]
    DARBRE P D, ALIARRAH A, MILLER W R, et al. Concentrations of parabens in human breast tumours[J]. Journal of Applied Toxicology, 2004,2004,24:5-13.
    [4]
    HARVEY P W. Parabens, oestrogenicity, underarm cosmetics and breast cancer: a perspective on a hypothesis[J]. Journal of Applied Toxicology, 2003, 23(5):285-288.
    [5]
    MCGRATH K G. An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and under arms having[J]. European Journal of Cancer Prevention, 2003,12:479-485.
    [6]
    MASON M M, CATE C C, BAKER J. Toxicology and carcinogenesis of various chemicals used in the preparations of vaccines[J]. Clinical Toxicology,1971,4:185-204.
    [7]
    TATEMATSU M, TSUDA H, SHIRAI T, et al. Placental glutathione S-transferase (GST-P) as a new marker for hepatocarcinogenesis: in vivo short-term screening for hepatocarcinogens[J]. Toxicologic Pathologists, 1987,15(1):60-68.
    [8]
    ALVAREZ-RIVERA G, LLOMPART M, GARCIA-JARES C, et al. Identification of halogenated photo products generated after ultraviolet-irradiation of parabens and benzoates in water containing chlorine by solid-phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Chromatography A,2014,1349:105-115.
    [9]
    LI W H, GAO L H, SHI Y L, et al. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China[J]. Science of the Total Environment,2016,539:262-270.
    [10]
    PENG X Z, XIONG S S, OU W H, et al. Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China[J]. Journal of Hazardous Materials, 2016:139-146.
    [11]
    LEE H B, PEART T E, SVOBODA M L. Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2005, 1094(1/2):122-129.
    [12]
    周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报,2017.26(6):1034-1041.
    [13]
    YAN C X, YANG Y, ZHOU J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013,175: 22-29.
    [14]
    HERNANDO M D, MEZCUA M, FERNANDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in waste water effluents, surface water sand sediments[J]. Talanta, 2006,69(2):334-342.
    [15]
    EUROPEAN COMMISSION. Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No.1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the council concerning the placing of biocidal products on the market. Part Ⅱ[Z]. Ispra, Italy: Joint Research Centre,2003(EUR 20418 EN/2).
    [16]
    EUROPEAN COMMISSION. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC)No.1488/94 on risk assessment for existing substances[Z]. Luxembourg:Office for Official Publications of the European Communities, 1996: 328-334.
    [17]
    WANG L, LIAO C Y, LIU F, et al. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries[J]. Environmental Science & Technology, 2012,46(21):11584-11593.
    [18]
    GONZALEZ-MARINO I, QUINTANA J B, RODRIGUEZ I, et al. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS)[J]. Water Research, 2011, 45(20):6770-6780.
    [19]
    YAMAMOTO H, NAKAMURA Y, NAKAMURA Y, et al. Initial ecological risk assessment of eight selected human pharmaceuticals in Japan[J]. Environmental Sciences: An International Journal of Environmental Physiology and Toxicology, 2007, 14(4): 177-193.
    [20]
    YAMAMOTO H, TAMURA I, HIRATA Y, et al. Aquatic toxicity and ecological risk assessment of seven parabens: individual and additive approach[J]. Science of the Total Environment, 2011,410/411:102-111.
    [21]
    KAMAYA Y, FUKAYA Y, SUZUKI K. Acute toxicity of benzoic acids to the crustacean Daphnia magna[J]. Chemosphere, 2005,59(2):255-261.
    [22]
    MUTIYAR P K, MITTAL A K. Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges[J]. Environmental Science & Pollution Research, 2014, 21(12):7723-7736.
    [23]
    QIN N, HE W, KONG X Z, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators[J]. Ecological Indicators, 2013, 24(3): 599-608.
    [24]
    WANG X L, TAO S, DAWSON R W, et al. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a tianjin wastewater-irrigated area[J] Environmental Research, 2002, 90(3): 201-206.
    [25]
    SOLOMON K, GIESY J, JONES P. Probabilistic risk assessment of agrochemicals in the environment[J]. Crop Protection,2000,19(8):649-655.
    [26]
    FENG J L, ZHAO J H, XI N N, et al. Parabens and their metabolite in surface water and sediment from the Yellow River and the Huai River in Henan Province: spatial distribution, seasonal variation and risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 172:480-487.
    [27]
    KASPRZYK-HORDERN B, DINSDALE R M, GUWY A J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK[J]. Water Research, 2008, 42(13):3498-3518.
    [28]
    GONZALEZ-MARINO I, QUINTANA J B, RODRIGUEZ I, et al. Simultaneous determination of parabens, triclosan and triclocarban in water by liquid chromatography/electrospray ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009,23(12):1756-1766.
    [29]
    PENG X Z, YU Y Y, TANG C M, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China[J]. Science of the Total Environment, 2008,397(1/2/3):158-166.
    [30]
    姚萃.上海市典型污水处理厂和地表水中对羟基苯甲酸酯的污染特性及风险评估研究[D].上海:上海大学,2020.
    [31]
    LIAO C Y, LEE S, MOON H, et al. Parabens in sediment and sewage sludge from the united states, Japan, and Korea: spatial distribution and temporal trends[J]. Environmental science & Technology, 2013, 47(19):10895-10902.
    [32]
    INUI M. Effect of UV screens and preservatives on vitellogenin and choriogenin production in male medaka (Oryzias latipes)[J]. Toxicology, 2003,194(1/2):43-50.
    [33]
    TERASAKI M, ABE R, MAKINO M, et al. Chronic toxicity of parabens and their chlorinated by-products in Ceriodaphnia dubia[J]. Environmental Toxicology, 2015,30(6):664-673.
  • Relative Articles

    [1]WU Yi, MAO Xufeng, SONG Xiuhua, YU Hongyan, TANG Wenjia, XIE Shunbang, LIU Zebi, DING Qizhi. COMMUNITY CHARACTERISTICS AND INFLUENCING FACTORS OF METHANOGENS IN CASCADE RESERVOIRS IN THE UPPER YELLOW RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 8-17. doi: 10.13205/j.hjgc.202412002
    [2]XIA Qiongqiong, ZHENG Xingcan, GU Miao, LI Mai, SHANG Wei, TIAN Yongying, HUANG Haiwei, ONG Say Leong. CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 240-246. doi: 10.13205/j.hjgc.202409023
    [3]LUO Fei, LIAO Man, LIN Ting, XI Xiuping, CHEN Mengfang, SONG Jing. STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 159-166. doi: 10.13205/j.hjgc.202408019
    [4]SHEN Yaohui, KANG Caixia, WU Mingwei, LIU Yurun, TONG Zhengong, WANG Liyuan. SPATIAL-TEMPORAL DISTRIBUTION CHARACTERISTICS AND INFLUENCING FACTORS OF CONVERTIBLE NITROGEN IN SURFACE SEDIMENTS OF THE POYANG LAKE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 18-27. doi: 10.13205/j.hjgc.202405003
    [5]CHI Shanqing, LIN Caiqiang, WU Ligui, ZOU Xiaoming, HUANG Xiangfeng, ZHANG Haiping, XIE Rongrong, LI Jiabing, WU Qiaofeng, LIU Jia. TEMPORAL AND SPATIAL DISTRIBUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF NUTRIENTS AND ANTIBIOTICS IN URBAN ARTIFICIAL LAKES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 29-36. doi: 10.13205/j.hjgc.202401005
    [6]ZHANG Jinfeng, XU Chengbin, GUO Fei. A BIBLIOMETRIC STUDY OF ANTIMONY ECOLOGICAL ENVIRONMENTAL RISK AND WATER QUALITY BENCHMARKING TREND[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 207-214. doi: 10.13205/j.hjgc.202403026
    [7]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [8]WANG Chengwen, ZHANG Yong, ZHANG Jiaxin, ZHANG Hui. SPATIAL DISTRIBUTION OF SEDIMENT NUTRIENTS IN A WETLAND WITH RECLAIMED WATER SUPPLEMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 87-92,104. doi: 10.13205/j.hjgc.202301011
    [9]LI Danlin, GUO Shuai, HUANG Rongmin, ZHANG Hao, CHENG Haoke. RISK ASSESSMENT OF EXTRANEOUS WATER IN SEWAGE SYSTEMS BASED ON INTEGRATED MONITORING OF WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 39-45. doi: 10.13205/j.hjgc.202311006
    [10]ZHANG Yaning, ZHU Weihuang, DONG Ying, WU Xijun, LIU Jing. EFFECT OF REDOX CONDITION AND MICROBIAL ACTION ON HEAVY METALS TRANSFORMATION IN RESERVOIR SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 101-108. doi: 10.13205/j.hjgc.202306014
    [11]XUE Zhaoxia, FENG Qian, FANG Fang, LUO Jingyang, CAO Jiashun, XU Runze. EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
    [12]CUI Feijian, QIN Guangxiong, ZENG Hailong, HUANG Zhiwei, LI Wenjing, YANG Hanjie, HU Yanfang, FANG Huaiyang, ZENG Fantang, DU Hongwei. SPATIAL DISTRIBUTION CHARACTERISTICS AND POLLUTION ASSESSMENT OF NITROGEN, PHOSPHORUS AND HEAVY METAL IN SURFACE SEDIMENTS OF HEAVILY POLLUTED TRIBUTARIES OF SHAHE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 110-116. doi: 10.13205/j.hjgc.202201016
    [13]SU Jinwei, ZHANG Lingfei, YU Minghui, SUN Tianxin, WANG Bo, ZHAO Jinghao, WANG Ziyi, SUN Yue, ZHOU Shilei. CHARACTERISTICS AND DISTRIBUTION OF NITROGEN FORMS IN SEDIMENTS OF BAIYANGDIAN LAKE IN SUMMER AND AUTUMN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 53-58,153. doi: 10.13205/j.hjgc.202202009
    [14]XIONG Fu-zhong, WEN Dong-hui. ADVANCES OF HIGHLY-EFFICIENT TECHNOLOGIES AND THEORIES FOR REFRACTORY INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 1-15,40. doi: 10.13205/j.hjgc.202111001
    [15]PENG Yan, CHEN Di-yun, CHEN Nan, ZENG Lin-wei. PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 13-19,24. doi: 10.13205/j.hjgc.202104003
    [16]MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023
    [17]ZHANG Qing, MO Hua, XU Hai-hong, WU Jia-yu, SHUAI Wei. PRESENT SITUATION OF CO-COMBUSTION OF WASTE AND COAL IN POWER PLANTS AND SUGGESTIONS ON ENVIRONMENTAL MANAGEMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 202-207. doi: 10.13205/j.hjgc.202006033
    [18]WANG Qing-feng, FAN Lei-lei, WANG Dan, PENG Hui-hui, LI Zhong-gen. ECOLOGICAL RISK OF MERCURY IN SURFACE SEDIMENTS OF TYPICAL URBAN STREAM IN GUIZHOU PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 249-254. doi: 10.13205/j.hjgc.202008041
    [19]Hu Cuijuan Ding Feng Li Shibei Yi Aihua Bo Xin, . A COMPARATIVE STUDY AND THE STATUS QUO OF REGULATORY AIR QUALITY MODEL AT HOME AND ABROAD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 137-140. doi: 10.13205/j.hjgc.201501032
    [20]Hu Cuijuan Ding Feng Li Shibei Yi Aihua Bo Xin, . A COMPARATIVE STUDY AND THE STATUS QUO OF REGULATORY AIR QUALITY MODEL AT HOME AND ABROAD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 128-131. doi: 10.13205/j.hjgc.201501030
  • Cited by

    Periodical cited type(9)

    1. 徐安宁,王咏薇,吕亚宁,左天赐,戴泽凯,孟新杰,陈磊. 山地地形对喀左PM_(2.5)重污染事件的影响模拟. 环境科学学报. 2025(02): 380-393 .
    2. 苟爱萍,李皖新,王江波. 重庆市绿色空间景观格局与PM_(2.5)浓度时空相关性. 地球科学与环境学报. 2024(01): 25-37 .
    3. 姚宇坤,杨振亚,陈凤,李国平. 江苏东南部典型城市臭氧污染特征与成因分析. 资源节约与环保. 2024(01): 95-100 .
    4. 王桂霞,王妍然,孟赫,丁椿,邱晓国,张淼,许杨,解军. 山东省PM_(2.5)污染现状及预报效果对比分析. 环境监控与预警. 2024(02): 31-38 .
    5. 韩力慧,兰童,程水源,王迎澳,齐超楠,田健,王海燕,韩登越,王慎澳. 唐山市PM_(2.5)和O_3的演变特征及其对大气复合污染的协同影响. 环境科学. 2024(08): 4385-4397 .
    6. 谢金林,曹良中,张智,王妍,张辉,李澜,徐少文. PM_(2.5)浓度时空分布特征及驱动因子分析——以华中地区为例. 绿色科技. 2024(18): 163-169+179 .
    7. 郑常准,赵锦慧,曾荣俊,唐豪,林铭淋,方艺霖. 宜荆荆地区2020—2022年大气污染物时空变化特征分析. 湖北大学学报(自然科学版). 2024(06): 820-830 .
    8. 高衍新,孙文,杜英林,张晓. 气温与PM_(2.5)交互作用对呼吸系统疾病就诊风险的影响研究:基于山东省四城市分析. 环境卫生学杂志. 2023(01): 30-36 .
    9. 张伶俐,王纯,郭栋,王冀. 大气环流异常对吉林省霾污染的影响. 气象灾害防御. 2023(04): 13-17 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.3 %FULLTEXT: 17.3 %META: 79.6 %META: 79.6 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 29.6 %其他: 29.6 %上海: 2.5 %上海: 2.5 %伊利诺伊州: 3.7 %伊利诺伊州: 3.7 %兰州: 1.9 %兰州: 1.9 %北京: 1.2 %北京: 1.2 %台州: 1.2 %台州: 1.2 %合肥: 0.6 %合肥: 0.6 %太原: 0.6 %太原: 0.6 %安康: 0.6 %安康: 0.6 %岩手县: 1.9 %岩手县: 1.9 %常州: 0.6 %常州: 0.6 %常德: 0.6 %常德: 0.6 %广州: 4.3 %广州: 4.3 %开封: 1.2 %开封: 1.2 %张家口: 2.5 %张家口: 2.5 %成都: 1.2 %成都: 1.2 %扬州: 1.2 %扬州: 1.2 %揭阳: 1.2 %揭阳: 1.2 %昆明: 1.9 %昆明: 1.9 %朝阳: 0.6 %朝阳: 0.6 %杭州: 6.2 %杭州: 6.2 %深圳: 0.6 %深圳: 0.6 %湖州: 3.1 %湖州: 3.1 %漯河: 0.6 %漯河: 0.6 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芝加哥: 5.6 %芝加哥: 5.6 %苏州: 0.6 %苏州: 0.6 %蚌埠: 0.6 %蚌埠: 0.6 %衡阳: 0.6 %衡阳: 0.6 %西宁: 0.6 %西宁: 0.6 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.9 %运城: 1.9 %遵义: 0.6 %遵义: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 1.2 %长沙: 1.2 %其他上海伊利诺伊州兰州北京台州合肥太原安康岩手县常州常德广州开封张家口成都扬州揭阳昆明朝阳杭州深圳湖州漯河石家庄芒廷维尤芝加哥苏州蚌埠衡阳西宁贵阳运城遵义郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(7) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return