Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
Citation: HE Jianwei, HUANG Xiaoyan, HUANG Ruonan, CAI Yang, ZHAO Fuyun. ANALYSIS OF INDOOR POLLUTANT MIGRATION CHARACTERISTICS UNDER COUPLING EFFECT OF SOLAR PHOTOCATALYSIS AND HYBRID VENTILATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 148-156. doi: 10.13205/j.hjgc.202404018

ANALYSIS OF INDOOR POLLUTANT MIGRATION CHARACTERISTICS UNDER COUPLING EFFECT OF SOLAR PHOTOCATALYSIS AND HYBRID VENTILATION

doi: 10.13205/j.hjgc.202404018
  • Received Date: 2023-05-13
    Available Online: 2024-06-01
  • To realize all-year-round air purification together with strengthening indoor ventilation in indoor environment, this study has numerically proposed a solar photocatalytic ventilation wall system coupling with hybrid ventilation and further investigated the diffusion characteristics of pollutants in winter and summer. Based on computational fluid dynamics, key parameters of solar radiation intensity and initial velocity have been comprehensively studied to analyze the effects on system pollutant removal rate and comprehensive evaluation index. The simulated results showed that the collaborative model for pollutant removal and hybrid ventilation is reliable and feasible. Especially, the comprehensive evaluation index for winter mode gradually increased from 0.00 to 1.00 with an increase in radiation intensity, while the summer model showed a negative correlation from 0.50 to 0.37. Increasing the initial velocity caused the comprehensive evaluation index of the winter model to decrease by up to 97%, while that of the summer model initially increased, then decreased and finally increased again. The adjustment of the external heat flow input and initial velocity has positive significance for promoting the removal of indoor pollutants.
  • [1]
    CAI Y, HE J W, HUANG X Y, et al. An updated review of indoor pollutant purification by solar photocatalytic ventilation wall: materials, modelling and performance evaluation[J]. Indoor and Built Environment, 2023,32(7):1296-1318.
    [2]
    WHO. The Global Health Observatory: Household Air Pollution Attributable Deaths[R]. 2022.
    [3]
    王军, 叶蔚, 邵晓亮, 等. 室内通风与净化技术[M]. 北京:中国建筑工业出版社, 2020.
    [4]
    PARK K, WOO D, LEIGH S, et al. Impact of hybrid ventilation strategies in energy savings of buildings: in regard to mixed-humid climate regions[J]. Energies, 2022, 15(6): 1960.
    [5]
    郭娟, 王汉青. 基于Fluent的多元通风系统数值模拟分析[J]. 流体机械, 2013, 41(5): 29-33.
    [6]
    YU B D, YANG J C, HE W, et al. The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system[J]. Energy, 2019, 174: 420-435.
    [7]
    吴双应, 邱毅, 肖兰. 室内外环境温度对光伏光催化型Trombe墙性能和功能的影响[J]. 东北电力大学学报, 2021, 41(1): 31-40.
    [8]
    WU S Y, WANG T, XIAO L, et al. Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system[J]. Solar Energy, 2019, 180: 489-500.
    [9]
    DAVIDSON L. Calculation of the turbulent buoyancy-driven flow in a rectangular cavity using an efficient solver and two different low reynolds number κ-ε turbulence models[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 129-147.
    [10]
    YU B D, LI N S, JI J. Performance analysis of a purified Trombe wall with ventilation blinds based on photo-thermal driven purification[J]. Applied Energy, 2019, 255: 113846.
    [11]
    JIE J, HUA Y, GANG P, et al. Study of PV-Trombe wall assisted with DC fan[J]. Building and Environment, 2007, 42(10): 3529-3539.
    [12]
    XU Q J, ZHANG Y P, MO J H, et al. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence[J]. Environmental Science & Technology, 2011, 45(13): 5754-5760.
    [13]
    MAHMOOD A, WANG X, XIE X, et al. Degradation behavior of mixed and isolated aromatic ring containing VOCs: langmuir-Hinshelwood kinetics, photodegradation, in-situ FTIR and DFT studies[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105069.
    [14]
    CHEN B, CHEN X, DING Y H, et al. Shading effects on the winter thermal performance of the Trombe wall air gap: an experimental study in Dalian[J]. Renewable Energy, 2006, 31(12): 1961-1971.
    [15]
    FERNNDEZ-HERNNDEZ F, CEJUDO-LPEZ J, DOMNGUEZ-MUOZ F, et al. A new desiccant channel to be integrated in building faades[J]. Energy and Buildings, 2015, 86: 318-327.
    [16]
    WU S Y, XU L, XIAO L. Performance study of a novel multi-functional trombe wall with air purification, photovoltaic, heating and ventilation[J]. Energy Conversion and Management, 2020, 203: 112229.
    [17]
    SERRANO-ARELLANO J, GIJN-RIVERA M, RIESCO-VILA J, et al. Numerical investigation of transient heat and mass transfer by natural convection in a ventilated cavity: outlet air gap located close to heat source[J]. International Journal of Heat and Mass Transfer, 2014, 76: 268-278.
    [18]
    YOUNSI Z, KOUFI L, NAJI H. Numerical study of the effects of ventilated cavities outlet location on thermal comfort and air quality[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(11): 4462-4483.
    [19]
    张建良, 陈灿, 李静. PMV-PPD指标计算医院病房舒适温湿度[J]. 建筑热能通风空调, 2017, 36(3): 33-35

    ,46.
    [20]
    朱琦彬, 苏亚欣. 内置式PV-Trombe墙对室内通风特性的影响[J]. 建筑热能通风空调, 2015, 34(5): 80-82

    ,90.
    [21]
    YU B D, HOU J X, HE W, et al. Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification[J]. Applied Energy, 2018, 226: 365-380.
  • Relative Articles

    [1]ZHAO Tianrui, CHEN Zhengrui, LIU Yiming, LI Yanliang, GUO Wei, TANG Xiaomi, TIAN Yu, ZHANG Jun, WANG Shutao. A SPATIAL DISTRIBUTION MODEL OF DOMESTIC WASTE BASED ON GIS REMOTE SENSING DATA ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 213-218. doi: 10.13205/j.hjgc.202302028
    [2]HAN Kun, LIU Ruhai, XU Hongxia, WANG Yan, SHAO Long, LIU Xiaoyu. CHARACTERISTICS AND SOURCES APPORTIONMENT OF WATER-SOLUBLE IONS IN DUSTFALL IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 111-117,193. doi: 10.13205/j.hjgc.202203017
    [3]LI Huaxiang, ZHAO Xiujun, LIU Yinghua, LUO Zhiji. SPATIAL DISTRIBUTION AND RISK ASSESSMENT OF TUNGSTEN POLLUTION OF SOIL IN A SMELTING SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 141-147. doi: 10.13205/j.hjgc.202201021
    [4]LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
    [5]NIU Zhenru, LI Feifei, ZHANG Youjun, QU Weigui, CONG Hui, LIU Shigang, ZHANG Jia. SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 94-101,228. doi: 10.13205/j.hjgc.202203015
    [6]PEI Hao-peng, XU Yan, CHEN Rui, TU Qi, LI Hou-yu, SHI Rong-guang. DISTRIBUTION CHARACTERISTICS AND INFLUENCING FACTORS OF ANTIBIOTICS IN SOILS OF DIFFERENT LAND USE TYPES IN SUBURBS OF TIANJIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 166-173. doi: 10.13205/j.hjgc.202101026
    [7]PENG Jin-jin, LI Lin, ZHENG Chuan, HU Ling, WU Xiao-xu. ANALYSIS OF DISTRIBUTION CHARACTERISTICS OF BTEX IN A DYESTUFF CHEMICAL SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 187-194. doi: 10.13205/j.hjgc.202104028
    [8]ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033
    [9]LIU Jia-hong, LIU Sheng-nan, LIU Mao-hui, YUE Ya-yun, YANG Duo-kun, SUN Meng, LI Jing. INVENTORY AND CHARACTERISTICS OF SMALL-SCALE VOCs IN A DISTRICT OF TIANJIN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 188-194,200. doi: 10.13205/j.hjgc.202008031
    [10]ZHANG Jun-hui, LI Dong-xing, LIU Bin, LIN Qing, ZHOU Xiong-hui, KANG Xiu-li. MAGNETIC RESPONSE OF ENVIRONMENT POLLUTION ABOUT DUST-LOADED VEGETATION LEAVES ON MAIN ROADS IN BAOJI CITY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 126-132. doi: 10.13205/j.hjgc.202005022
  • Cited by

    Periodical cited type(8)

    1. 赵潜宜,周王子,程晓君. 基于智慧感知体系的流域控制断面污染负荷分析. 水利水电快报. 2025(02): 94-98+113 .
    2. 陈睿星,肖倩,朱紫薇. 城市污水系统碳排放结构及减排路径研究——以深圳市为例. 给水排水. 2025(01): 49-54 .
    3. 沈凌,张宏,周合喜. 土地集约型高排放标准半地下水质净化厂设计. 净水技术. 2025(02): 174-180 .
    4. 苏善昭,朱贵兵. 溯源排查在水环境治理中的作用研究——以深圳市宝安区西乡河流域为例. 水上安全. 2025(03): 4-6 .
    5. 刘丽娜,王治霖. 内蒙古地区生态清洁小流域综合治理分析. 绿色科技. 2024(12): 5-8+43 .
    6. 汤钟,喻灵敏. 基于“厂网河城”思路的小流域水质稳定达标探索及实践. 中国市政工程. 2024(06): 42-47+158 .
    7. 孙方源. “董大水库”水源地保护的水污染防治技术研究. 中国市政工程. 2024(06): 53-57+159-160 .
    8. 陈正侠,张潇月,于金旗,张鹤清,佟庆远,徐常青,贾海峰. 面向水质目标管理的城镇河湖排口雨水径流控制方法与技术. 给水排水. 2024(12): 15-20+27 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 83.7 %META: 83.7 %PDF: 0.7 %PDF: 0.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.3 %其他: 16.3 %其他: 2.5 %其他: 2.5 %上海: 1.8 %上海: 1.8 %东莞: 1.1 %东莞: 1.1 %临汾: 0.4 %临汾: 0.4 %九江: 0.4 %九江: 0.4 %佛山: 0.4 %佛山: 0.4 %保定: 0.4 %保定: 0.4 %兰州: 1.1 %兰州: 1.1 %北京: 1.4 %北京: 1.4 %南京: 0.7 %南京: 0.7 %南昌: 0.4 %南昌: 0.4 %台州: 1.4 %台州: 1.4 %呼和浩特: 0.4 %呼和浩特: 0.4 %商丘: 0.4 %商丘: 0.4 %天津: 2.1 %天津: 2.1 %太原: 1.4 %太原: 1.4 %宜春: 0.4 %宜春: 0.4 %常德: 0.7 %常德: 0.7 %广州: 2.5 %广州: 2.5 %张家口: 0.7 %张家口: 0.7 %张掖: 0.7 %张掖: 0.7 %成都: 0.7 %成都: 0.7 %扬州: 0.7 %扬州: 0.7 %昆明: 3.2 %昆明: 3.2 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.8 %杭州: 1.8 %桂林: 0.4 %桂林: 0.4 %武威: 0.7 %武威: 0.7 %武汉: 0.4 %武汉: 0.4 %汉中: 0.7 %汉中: 0.7 %济南: 1.1 %济南: 1.1 %济源: 0.7 %济源: 0.7 %淮安: 0.4 %淮安: 0.4 %漯河: 3.9 %漯河: 3.9 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 30.7 %芒廷维尤: 30.7 %芝加哥: 2.1 %芝加哥: 2.1 %衢州: 0.4 %衢州: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 2.8 %运城: 2.8 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 4.6 %郑州: 4.6 %重庆: 0.4 %重庆: 0.4 %银川: 2.1 %银川: 2.1 %长春: 0.4 %长春: 0.4 %长沙: 1.1 %长沙: 1.1 %阳江: 0.4 %阳江: 0.4 %青岛: 0.4 %青岛: 0.4 %其他其他上海东莞临汾九江佛山保定兰州北京南京南昌台州呼和浩特商丘天津太原宜春常德广州张家口张掖成都扬州昆明晋城朝阳杭州桂林武威武汉汉中济南济源淮安漯河绵阳芒廷维尤芝加哥衢州贵阳运城遵义邯郸郑州重庆银川长春长沙阳江青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return