Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SU Hao, FENG Li, ZHANG Liqiu. INFLUENCE OF RESIDUAL NANOPARTICLES IN MUNICIPAL SEWAGE ON FORMATION OF CHLORINATION DISINFECTION BY-PRODUCTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 33-40. doi: 10.13205/j.hjgc.202308005
Citation: LI Ru, LI Xiaokang, FENG Yan, WANG Xueyan, XING Qianyun. DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019

DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST

doi: 10.13205/j.hjgc.202404019
  • Received Date: 2023-04-07
    Available Online: 2024-06-01
  • In this study, Mn-TiO2/γ-Al2O3 catalyst was prepared by impregnation method to degrade xylene with dielectric barrier discharge (DBD) plasma. The oxidation properties of xylene in DBD plasma under different discharge power, initial mass concentration, and gas flow were studied. The catalyst was characterized by XRD and FT-IR to analyze the crystal shape and properties of the catalyst before and after DBD plasma discharge. The results showed that under the conditions of discharge power of 20 W, inlet concentration of xylene 38.62 mg/m3 and inlet flow rate of 0.65 L/min, the degradation efficiency of xylene reached 75.8% and the energy efficiency of the reactor was 0.1027 g/(kW·h) after adding Mn-TiO2/γ-Al2O3 catalyst. At the same time, ozone concentration was reduced to 36.94 mg/m3. The characterization results showed that the crystal shape and properties of the catalyst were not changed before and after the DBD plasma discharge. To further analyze the intermediate products produced in the process of degradation of xylene, FT-IR, GC-MS, and emission spectroscopy were used for diagnosis. It was found that the types and quantity of intermediate products decreased, the emission spectral intensity increased, and the number of characteristic spectral lines increased after adding catalyst. This study can provide a theoretical reference for the performance optimization and catalyst selection of DBD plasma in the application of xylene degradation.
  • [1]
    LIU R, WU H, SHI J H, et al. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2022, 12(23): 6945-6991.
    [2]
    DAVIDSON C J, HANNIGAN J H, BOWEN S E. Effects of inhaled combined benzene, toluene, ethylbenzene, and xylenes (BTEX): toward an environmental exposure model[J]. Environmental toxicology and pharmacology, 2021, 81: 103518.
    [3]
    LIU B S, YANG Y, YANG T, et al. Effect of photochemical losses of ambient volatile organic compounds on their source apportionment[J]. Environment International, 2023,172: 107766.
    [4]
    YU B, YUAN Z, YU Z, et al. BTEX in the environment: an update on sources, fate, distribution, pretreatment, analysis, and removal techniques[J]. Chemical Engineering Journal, 2022,435(Part1): 134825.
    [5]
    MU Y B, WILLIAMS P T. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: a review[J]. Chemosphere, 2022,308(Part3): 136481.
    [6]
    LU W J, ABBAS Y, MUSTAFA M F, et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Frontiers of Environmental Science & Engineering, 2019, 13(2): 1-19.
    [7]
    LI S J, DANG X Q, YU X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review[J]. Chemical Engineering Journal, 2020, 388: 124275.
    [8]
    PANDA P, MAHANTA R K, MOHANTY S, et al. Abatement of gas-phase VOCs via dielectric barrier discharge plasmas[J]. Environmental Science and Pollution Research, 2021, 28: 28666-28679.
    [9]
    ZHANG H, LI K, SUN T, et al. The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates[J]. Research on Chemical Intermediates, 2013, 39(3): 1021-1035.
    [10]
    刘鑫. 低温等离子体催化协同降解混合VOCs(甲苯、丙酮及乙酸乙酯)的研究[D]. 上海:东华大学, 2022.
    [11]
    郑毅文. 介质阻挡放电协同催化降解邻二氯苯的实验研究[D]. 杭州:浙江大学, 2021.
    [12]
    LIU Z, ZHANG Y, JIANG S, et al. Enhanced catalytic performance and reduced by-products emission on plasma catalytic oxidation of high-concentration toluene using Mn-Fe/rGO catalysts[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108770.
    [13]
    YANG J, LIU S Y, HE T Y, et al. Degradation of toluene by DBD plasma-catalytic method with Mn<em>xCo<em>yCe<em>zO<em>n catalysts: characterization of catalyst, catalytic activity and continuous test[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106361.
    [14]
    LYU Y, LI C T, DU X Y, et al. Catalytic removal of toluene over manganese oxide-based catalysts: a review[J]. Environmental Science and Pollution Research, 2020, 27: 2482-2501.
    [15]
    CHANG T, MA C L, SHEN Z X, et al. Mn-based catalysts for post non-thermal plasma catalytic abatement of VOCs: a review on experiments, simulations and modeling[J]. Plasma Chemistry and Plasma Processing, 2021, 41(5): 1239-1278.
    [16]
    DONG S L, WANG Y F, YANG J, et al. Performance and mechanism analysis of degradation of toluene by DBD plasma-catalytic method with MnO<em>x/Al2O3 catalyst[J]. Fuel, 2022, 319: 123721.
    [17]
    JIANG L Y, WANG P J, ZHANG Y F, et al. Plasma-catalytic oxidation of chlorobenzene over Co-Mn/TiO2 catalyst in a dielectric barrier discharge reactor with the segmented electrodes[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108021.
    [18]
    姜理英, 张瑜芬, 胡俊,等. NTP协同双金属锰基催化剂降解氯苯的性能研究[J]. 环境科学学报, 2021, 41(3): 922-931.
    [19]
    AYUB K S, ZAMAN W Q, MIRAN W, et, al. Efficient post-plasma catalytic degradation of toluene via series of Co-Cu/TiO2 catalysts[J]. 2022, 8(48): 4227-4248.
    [20]
    LI W J, GU Z Y, TENG F H, et al. The synergetic effect of UV rays on the decomposition of xylene in dielectric barrier discharge plasma and photocatalyst process[J]. The European Physical Journal Applied Physics, 2018, 81(2): 20801.
    [21]
    WU Z L, ZHOU W L, ZHU Z B, et al. Enhanced oxidation of xylene using plasma activation of an Mn/Al2O3 catalyst[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 163-172.
    [22]
    DONG S L, WANG Y F, YANG J, et al. Performance and mechanism analysis of degradation of toluene by DBD plasma-catalytic method with MnO<em>x/Al2O3 catalyst[J]. Fuel, 2022, 319: 123721.
    [23]
    ZENG X L, LI B, LIU R Q, et al. Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system[J]. Chemical Engineering Journal, 2020, 384: 123362.
    [24]
    石秀娟, 梁文俊, 尹国彬, 等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483.
    [25]
    张益坤, 姚鑫, 陈铭夏, 等. 低温等离子体除苯过程中臭氧的演变与作用[J]. 工业催化, 2020, 28(4): 68-72.
    [26]
    韩丰磊, 季纯洁, 张子琦, 等. 低温等离子体协同催化技术处理VOCs研究综述[J]. Clean Coal Technology, 2022, 28(2): 23-31.
    [27]
    LIU P F, HE L M, ZHAO B B. Discharge and optical emission spectrum characteristics of a coaxial dielectric barrier discharge plasma-assisted combustion actuator[J]. Journal of Spectroscopy, 2020, 2020: 6034848.
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]WANG Jianhui, LIAO Wanshan, LI Huimin, FENG Dong, GUO Zhiwei, Mohamed S. Mahmoud, ZHANG Bing, GAO Xu, SHEN Yu, CHEN Youpeng. A DATA ENHANCEMENT METHOD FOR SUPPORTING INTELLIGENT MANAGEMENT OF WWTPs UNDER DATA DEFICIENCY CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 153-159. doi: 10.13205/j.hjgc.202406018
    [3]WANG Qinyi, SHENG Yangyue, SONG Ningning, ZHANG Junqi, ZENG Songxi, QIAN Xiaoyong, QIU Kaipei, LIU Qizhen. PROGRESS OF CH4 AND N2O MONITORING IN FULL-SCALE WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 51-60. doi: 10.13205/j.hjgc.202310008
    [4]LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032
    [5]YAN Lu, CHEN Yun, GUO Yuanhui, HOU Maoxiang, LIU Zuohui. RESEARCH PROGRESS OF SELF-ACTUATED MICRO/NANOROBOTS IN WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 93-103,114. doi: 10.13205/j.hjgc.202311016
    [6]ZHANG Jiao, XIAO Kang, LIANG Shuai, HUANG Xia. MEMBRANE TECHNOLOGIES FOR MUNICIPAL WASTEWATER TREATMENT AND RECLAMATION IN CHINA:APPLICATION AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 1-6,153. doi: 10.13205/j.hjgc.202203001
    [7]GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025
    [8]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [9]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [10]WU Yuxing, WANG Xiaodong, CHEN Ning, YANG Benliang, YAN Tingliang, HUANG Qing. FULL-SCALE STUDY OF AN INTELLIGENT CARBON DOSING CONTROL SYSTEM IN A TYPICAL URBAN WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 212-218,271. doi: 10.13205/j.hjgc.202206027
    [11]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [12]WANG Qian, DENG Qiaosi, WU Wei, AI Fangyi, DU Junli, ZHANG Yuanhe, BAI Fan, LEI Mingming, QU Ruihua, GAN Yang, DU Weiwei. OPERATION DIAGNOSIS AND CARBON SOURCE OPTIMIZATION OF YONGCHUAN WASTEWATER TREATMENT PLANT USING PROCESS MODELING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 219-225. doi: 10.13205/j.hjgc.202206028
    [13]YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
    [14]JING Yu-shu, MOU Run-zhi, JIANG Yi-ming, LIU Zhang-qing, YANG Yan-dong. REDUCING ENERGY AND CHEMICALS CONSUMPTION OF WASTEWATER TREATMENT PLANTS BY ACCURATE AERATION CONTROL: A CASE STUDY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 141-145,165. doi: 10.13205/j.hjgc.202205020
    [15]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF THE ENVIRONMENTAL BEHAVIORS AND TOXICITY EFFECT OF NANOCERIA IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 7-13,75. doi: 10.13205/j.hjgc.202109002
    [16]LI Rui-cheng. ANALYSIS ON DESIGN CHARACTERISTICS OF A LARGE-SCALE SEMI-UNDERGROUND WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 109-115. doi: 10.13205/j.hjgc.202007017
    [17]LI Yi-huan, XI Lei-lei, ZHONG Yi-jie, HU Yu, ZHANG Hui-min, WU Zhen-yu. OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 76-81,26. doi: 10.13205/j.hjgc.202003013
    [18]ZHANG Shuang, YANG Qing, LIU Xiu-hong, CUI Bin, LIU Zhi-bin. RESEARCH PROGRASS ON STRUCTURAL CHARACTERISTICS AND APPLICATION OF EXPERT SYSTEM IN WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 25-31,99. doi: 10.13205/j.hjgc.202007004
    [19]Yang Bei Bai Xue Gu Haixin, . THE PREPARATION AND APPLICATION OF MAGNETIC ABSORBENT IN WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 25-29. doi: 10.13205/j.hjgc.201504006
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.2 %FULLTEXT: 8.2 %META: 88.0 %META: 88.0 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.0 %其他: 13.0 %其他: 0.7 %其他: 0.7 %Canton: 0.1 %Canton: 0.1 %China: 2.8 %China: 2.8 %Edinburg: 0.1 %Edinburg: 0.1 %Ottawa: 0.1 %Ottawa: 0.1 %Rochester: 0.1 %Rochester: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Viet Nam: 0.2 %Viet Nam: 0.2 %[]: 0.2 %[]: 0.2 %上海: 4.1 %上海: 4.1 %东莞: 5.0 %东莞: 5.0 %东营: 0.1 %东营: 0.1 %临汾: 0.1 %临汾: 0.1 %九江: 0.1 %九江: 0.1 %信阳: 0.1 %信阳: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 5.7 %北京: 5.7 %北海: 0.4 %北海: 0.4 %匹兹堡: 0.1 %匹兹堡: 0.1 %南京: 2.2 %南京: 2.2 %南昌: 0.4 %南昌: 0.4 %厦门: 0.2 %厦门: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈密尔顿: 0.1 %哈密尔顿: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 1.1 %天津: 1.1 %太原: 1.0 %太原: 1.0 %威海: 0.1 %威海: 0.1 %宁波: 0.4 %宁波: 0.4 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 1.5 %宣城: 1.5 %密蘇里城: 1.3 %密蘇里城: 1.3 %崇左: 0.1 %崇左: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.8 %常州: 0.8 %平顶山: 0.1 %平顶山: 0.1 %广州: 3.8 %广州: 3.8 %廊坊: 0.4 %廊坊: 0.4 %张家口: 1.1 %张家口: 1.1 %徐州: 0.1 %徐州: 0.1 %恩施: 0.1 %恩施: 0.1 %成都: 1.6 %成都: 1.6 %扬州: 0.1 %扬州: 0.1 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %无锡: 0.4 %无锡: 0.4 %日喀则: 0.1 %日喀则: 0.1 %日照: 0.1 %日照: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.5 %杭州: 2.5 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %檀香山: 0.2 %檀香山: 0.2 %武汉: 3.8 %武汉: 3.8 %江门: 0.4 %江门: 0.4 %沈阳: 0.2 %沈阳: 0.2 %泉州: 0.2 %泉州: 0.2 %济南: 0.7 %济南: 0.7 %济源: 0.2 %济源: 0.2 %深圳: 0.7 %深圳: 0.7 %湖州: 0.5 %湖州: 0.5 %湘潭: 0.4 %湘潭: 0.4 %滨州: 0.2 %滨州: 0.2 %漯河: 0.5 %漯河: 0.5 %潍坊: 0.4 %潍坊: 0.4 %烟台: 0.1 %烟台: 0.1 %玉溪: 0.1 %玉溪: 0.1 %珠海: 0.1 %珠海: 0.1 %百色: 0.4 %百色: 0.4 %盐城: 1.2 %盐城: 1.2 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 8.1 %芒廷维尤: 8.1 %芜湖: 0.5 %芜湖: 0.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏克: 0.1 %苏克: 0.1 %苏州: 0.8 %苏州: 0.8 %蚌埠: 0.4 %蚌埠: 0.4 %衢州: 0.7 %衢州: 0.7 %西宁: 10.3 %西宁: 10.3 %西安: 0.5 %西安: 0.5 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.1 %达州: 0.1 %运城: 1.2 %运城: 1.2 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %都伯林: 0.2 %都伯林: 0.2 %重庆: 1.6 %重庆: 1.6 %镇江: 2.2 %镇江: 2.2 %长春: 0.1 %长春: 0.1 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.5 %阳泉: 0.5 %阿克苏: 0.1 %阿克苏: 0.1 %青岛: 1.0 %青岛: 1.0 %韶关: 0.1 %韶关: 0.1 %香港: 0.1 %香港: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他CantonChinaEdinburgOttawaRochesterSan LorenzoViet Nam[]上海东莞东营临汾九江信阳兰州加利福尼亚州北京北海匹兹堡南京南昌厦门台州合肥周口呼和浩特哈密尔顿哈尔滨嘉兴大连天津太原威海宁波安康宜春宣城密蘇里城崇左巴音郭楞常州平顶山广州廊坊张家口徐州恩施成都扬州拉斯维加斯无锡日喀则日照昆明晋城朝阳杭州株洲格兰特县檀香山武汉江门沈阳泉州济南济源深圳湖州湘潭滨州漯河潍坊烟台玉溪珠海百色盐城石家庄福州秦皇岛纽约绍兴肇庆芒廷维尤芜湖芝加哥苏克苏州蚌埠衢州西宁西安贵阳达州运城遵义邯郸郑州都伯林重庆镇江长春长沙长治阜阳阳泉阿克苏青岛韶关香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (123) PDF downloads(4) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return