Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
Citation: HE Yan, YAN Xiaoxu, LI You, LIU Huhu, YANG Hui, DUAN Xiyu, LU Xiangyang, TIAN Yun, WANG Chong. RESEARCH PROGRESS ON EXOGENOUS ADDITIVES FOR ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 175-186. doi: 10.13205/j.hjgc.202404021

RESEARCH PROGRESS ON EXOGENOUS ADDITIVES FOR ANAEROBIC DIGESTION

doi: 10.13205/j.hjgc.202404021
  • Received Date: 2023-02-16
    Available Online: 2024-06-01
  • Introducing exogenous additives into the anaerobic digestion system can improve the performance of the anaerobic digestion system and play a positive role in rapid start-up, reducing inhibition, improving fermentation efficiency, and improving process stability. In recent years, research on anaerobic digestion additives has developed rapidly. This paper reviews the research progress of eight kinds of anaerobic digestion additives (microorganisms, enzymes, trace elements, nanomaterials, adsorbents, conductive materials, ash, and gas). It focuses on discussing their effects and mechanisms in anaerobic digestion. This paper graphically presents the action modes of various additives in the anaerobic system, discusses the fundamental problems that need to be paid attention to in the use of additives, and points out the current research deficiencies and future research directions, aiming at providing essential references for the in-depth research and application of anaerobic digestion additives.
  • [1]
    王凯军. 中国沼气发展历史回顾[EB/OL]. http://www.gxshuixie.com/xgxw/11536.jhtml, 2021-11-11.
    [2]
    薛英岚, 张静, 刘宇, 等. "双碳" 目标下钢铁行业控煤降碳路线图[J]. 环境科学, 2022, 43(10): 4392-4400.
    [3]
    瞿国华. 我国能源转型与过渡能源的合理选择[J]. 科学发展, 2022(12): 88-96.
    [4]
    XU H F, YUN S N, WANG C, et al. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite[J]. Bioresource Technology, 2020, 301: 122753.
    [5]
    LIU M R, WEI Y Q, LENG X Y. Improving biogas production using additives in anaerobic digestion: a review[J]. Journal of Cleaner Production, 2021, 297: 126666.
    [6]
    AJAY C M, MOHAN S, DINESHA P, et al. Review of impact of nanoparticle additives on anaerobic digestion and methane generation[J]. Fuel, 2020, 277: 118234.
    [7]
    祝其丽, 王彦伟, 谭芙蓉, 等. 复合菌系预处理和强化对玉米秸秆沼气发酵效率的影响[J]. 中国沼气, 2019, 37(4): 11-17.
    [8]
    吴树彪, 李颖, 董仁杰, 等. 生物强化在厌氧消化过程中的应用进展[J]. 农业机械学报, 2014, 45(5): 145-154.
    [9]
    AKYOL C, INCE O, BOZAN M, et al. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: what to expect from anaerobic fungus Orpinomyces sp.[J]. Bioresource Technology, 2019, 277: 1-10.
    [10]
    CAYETANO R D A, PARK J, KIM G B, et al. Enhanced anaerobic digestion of waste-activated sludge via bioaugmentation strategy-Phylogenetic investigation of communities by reconstruction of unobserved states(PICRUSt2) analysis through hydrolytic enzymes and possible linkage to system performance[J]. Bioresource Technology, 2021, 332: 125014.
    [11]
    AHMAD A O, SADEQ H A, ALBANY Y A, et al. Biodegradation of food waste by mesophilic and thermophilic microorganisms in Duhok City[J]. Kirkuk University Journal-Scientific Studies, 2022, 17(4): 34-41.
    [12]
    SHETTY D, JOSHI A, DAGAR S S, et al. Bioaugmentation of anaerobic fungus Orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment[J]. Biomass & Bioenergy, 2020, 138(C): 105546.
    [13]
    LI Y, WANG C R, XU X R, et al. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure[J]. Bioresource Technology, 2022, 346: 126607.
    [14]
    YANG Z Y, WANG W, LIU C, et al. Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: selection of strains and reactor performance evaluation[J]. Water Research, 2019, 155: 214-224.
    [15]
    YAN Y X, YAN M, RAVENNI G, et al. Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation[J]. Bioresource Technology, 2022, 343: 126146.
    [16]
    YAN Y X, YAN M, RAVENNI G, et al. Biochar enhanced bioaugmentation provides long-term tolerance under increasing ammonia toxicity in continuous biogas reactors[J]. Renewable Energy, 2022, 195: 590-597.
    [17]
    ZHANG S, CHANG J L, LIU W, et al. A novel bioaugmentation strategy to accelerate methanogenesis via adding Geobacter sulfurreducens PCA in anaerobic digestion system[J]. Science of the Total Environment, 2018, 642: 322-326.
    [18]
    FERRARO A, MASSINI G, MIRITANA V M, et al. A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: biogas production efficiency related to microbiological data[J]. Science of the Total Environment, 2019, 691: 885-895.
    [19]
    LINSONG H, LIANHUA L, YING L, et al. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion[J]. Chemosphere, 2022, 303(P3): 135127.
    [20]
    FOTIDIS I A, WANG H, FIEDEL N R, et al. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate[J]. Environmental Science & Technology, 2014, 48(13): 7669-7676.
    [21]
    TABATABAEI M, AGHBASHLO M, VALIJANIAN E, et al. A comprehensive review on recent biological innovations to improve biogas production, part Ⅱ: mainstream and downstream strategies[J]. Renewable Energy, 2020, 146: 1392-1407.
    [22]
    金曙光. 林业废弃物预处理提高酶解产糖及产沼气的研究[D]. 北京: 北京林业大学, 2016.
    [23]
    孙和临, 李建昌, 邵琼丽. 不同预处理对茶树叶厌氧消化产气的影响[J]. 中国沼气, 2018, 36(3): 53-57.
    [24]
    吕淑霞, 陈祖洁. 纤维素酶应用于酒精糟废水厌氧消化中的研究[J]. 中国沼气, 1994, 12(1): 1-5.
    [25]
    CARRRE H, DUMAS C, BATTIMELLI A, et al. Pretreatment methods to improve sludge anaerobic degradability: a review[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 1-15.
    [26]
    BONILLA S, CHOOLAEI Z, MEYER T, et al. Evaluating the effect of enzymatic pretreatment on the anaerobic digestibility of pulp and paper biosludge[J]. Biotechnology Reports, 2018, 17(C): 77-85.
    [27]
    MENG Y, LUAN F B, YUAN H R, et al. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment[J]. Bioresource Technology, 2017, 224: 48-55.
    [28]
    prez-rodrguez n, garcia-bernet d, DOMINGUEZ J M. Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production[J]. Renewable Energy, 2017, 107: 597-603.
    [29]
    FENG L Y, YAN Y Y, CHEN Y G. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10[J]. Journal of Environmental Sciences, 2009, 21(5): 589-594.
    [30]
    TASSEW F A, BERGLAND W H, DINAMARCA C, et al. Effect of particulate disintegration on biomethane potential of particle-rich substrates in batch anaerobic reactor[J]. Applied Sciences-Basel, 2019, 9(14): 2880.
    [31]
    SCHROYEN M, van HULLE S W H, HOLEMANS S, et al. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus[J]. Bioresource Technology, 2017, 244:597-604.
    [32]
    GARCIA N H, BENEDETTI M, BOLZONELLA D. Effects of enzymes addition on biogas production from anaerobic digestion of agricultural biomasses[J]. Waste & Biomass Valorization, 2019, 10(12): 3711-3722.
    [33]
    WANG X M, LI Z F, ZHOU X Q, et al. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw[J]. Bioresource Technology, 2016, 219: 150-157.
    [34]
    SILVA A F V, SANTOS L A, VALENCA R B, et al. Cellulase production to obtain biogas from passion fruit (Passiflora edulis) peel waste hydrolysate[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103510.
    [35]
    SCHIMPF U, SCHULZ R. Industrial by-products from white-rot fungi production. Part Ⅱ: application in anaerobic digestion for enzymatic treatment of hay and straw[J]. Process Biochemistry, 2019, 76: 142-154.
    [36]
    ODNELL A, RECKTENWALD M, STENSEN K, et al. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion[J]. Water Research, 2016, 103: 462-471.
    [37]
    马一方. 纤维素酶固定化及酶水解对厌氧消化性能影响的研究[D]. 北京: 北京化工大学, 2018.
    [38]
    ZHANG L, LOH K C. Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes-Enhanced operation stability and balanced trace nutrition[J]. Bioresource Technology, 2019, 278: 108-115.
    [39]
    ZHAO Z S, LI Y, QUAN X, et al. Improving the co-digestion performance of waste activated sludge and wheat straw through ratio optimization and ferroferric oxide supplementation[J]. Bioresource Technology, 2018, 267: 591-598.
    [40]
    LU T D, ZHANG J Y, WEI Y S, et al. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure[J]. Bioresource Technology, 2019, 287: 121393.
    [41]
    CAO X Q, WANG Y B, LIU T. Effects of iron powder addition and thermal hydrolysis on methane production and the archaeal community during the anaerobic digestion of sludge[J]. International Journal of Environmental Research & Public Health, 2022, 19(8): 4470.
    [42]
    ZHU X W, BLANCO E, BHATTI M, et al. Impact of metallic nanoparticles on anaerobic digestion: a systematic review[J]. Science of the Total Environment, 2021, 757: 143747.
    [43]
    TIAN Y L, ZHANG H Y, ZHENG L, et al. Effect of Zn addition on the cd-containing anaerobic fermentation process: biodegradation and microbial communities[J]. International Journal of Environmental Research & Public Health, 2019, 16(16): 2998.
    [44]
    TIAN Y L, ZHANG H Y, ZHENG L, et al. Process analysis of anaerobic fermentation exposure to metal mixtures[J]. International Journal of Environmental Research & Public Health, 2019, 16(14): 2458.
    [45]
    CHAN P C, LU Q, de TOLEDO R A, et al. Improved anaerobic co-digestion of food waste and domestic wastewater by copper supplementation-Microbial community change and enhanced effluent quality[J]. Science of the Total Environment, 2019, 670: 337-344.
    [46]
    GUO Q, MAJEED S, XU R, et al. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: a review[J]. Journal of Environmental Management, 2019, 240: 266-272.
    [47]
    蔡亚凡, 崔宗均, 王小芬. 厌氧消化系统中的微量元素及其生物利用度的研究综述[J]. 中国农业大学学报, 2017, 22(9): 1-11.
    [48]
    胡庆昊, 李秀芬, 陈坚, 等. 厌氧消化过程中镍及其螯合物的生物可利用性研究[J]. 环境科学, 2011, 32(2): 515-519.
    [49]
    LU B T, XIA D P, ZHAO S, et al. The influence mechanism of ethylenediaminetetraacetic acid (EDTA)and ferrous iron on the bioavailability of Fe in the process of low rank coal fermentation[J]. Biochemical Engineering Journal, 2022, 185: 108520.
    [50]
    ZHANG W L, ZHANG L, LI A M. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent[S, S]-EDDS via improving metals bioavailability[J]. Water Research, 2015, 84: 266-277.
    [51]
    ZHANG L, ZHANG J X, LOH K C. Enhanced food waste anaerobic digestion: an encapsulated metal additive for shear stress-based controlled release[J]. Journal of Cleaner Production, 2019, 235: 85-95.
    [52]
    DEHHAGHI M, MEISAM T, AGHBASHLO M, et al. A state-of-the-art review on the application of nanomaterials for enhancing biogas production[J]. Journal of Environmental Management, 2019, 251: 109597.
    [53]
    ZHOU J, ZHANG H N, LIU J B, et al. Effects of Fe3O4 nanoparticles on anaerobic digestion enzymes and microbial community of sludge[J]. Environmental Technology, 2023,4: 68-81.
    [54]
    JADHAV P, KHALID Z B, ZULARISAM A W, et al. The role of iron-based nanoparticles(Fe-NPs) on methanogenesis in anaerobic digestion performance[J]. Environmental Research, 2022, 204: 112043.
    [55]
    YU L, KIM D G, AI P, et al. Effects of metal and metal ion on biomethane productivity during anaerobic digestion of dairy manure[J]. Fermentation, 2023, 9(3): 262.
    [56]
    MATHERI A N, NTULI F, NGILA J C. Sludge to energy recovery dosed with selected trace metals additives in anaerobic digestion processes[J]. Biomass & Bioenergy, 2021, 144: 105869.
    [57]
    李晓敏. 纳米二氧化钛对污泥厌氧消化产甲烷的影响[J]. 工业安全与环保, 2018, 44(4): 92-95.
    [58]
    SINGH P K, KANUNGO S, MISHRA S, et al. Intrinsic insights of nanoparticles via anaerobic digestion for enhanced biogas production[M]. Cham: Springer International Publishing, 2021: 1-26.
    [59]
    ABDELWAHAB T A M, FODAH A E M. Utilization of nanoparticles for sustainable biogas production: process stability and effluent quality[J]. SN Applied Sciences, 2022, 4(12): 88-96.
    [60]
    PARK J H, KANG H J, PARK K H, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311.
    [61]
    龚子珊, 丁国生, 唐安娜. 磁性纳米粒子的制备及其在重金属离子处理中的应用[J]. 分析测试学报, 2014, 33(2): 231-238.
    [62]
    CERRILLO M, BURGOS L, RUIZ B, et al. In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions[J]. Renewable Energy, 2021, 180: 372-382.
    [63]
    LIZAMA A C, FIGUEIRAS C C, GAVIRIA L A, et al. Nanoferrosonication: a novel strategy for intensifying the methanogenic process in sewage sludge[J]. Bioresource Technology, 2019, 276: 318-324.
    [64]
    KHALID M J, ZESHAN, WAQAS A, et al. Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw[J]. Bioresource Technology, 2019, 275: 288-296.
    [65]
    HASSANEIN A, LANSING S, TIKEKAR R. Impact of metal nanoparticles on biogas production from poultry litter[J]. Bioresource Technology, 2019, 275: 200-206.
    [66]
    KHAN S Z, ZAIDI A A, NASEER M N, et al. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: a critical review[J]. Frontiers in Bioengineering & Biotechnology, 2022: 1470.
    [67]
    LUNA-DELRISCO M, ORUPLD K, DUBOURGUIER H C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion[J]. Journal of Hazardous Materials, 2011, 189(1/2): 603-608.
    [68]
    CHEN J L, STEELE T W J, STUCKEY D C. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity[J]. Science of the Total Environment, 2018, 642: 276-284.
    [69]
    CERRILLO M, BURGOS L, RUIZ B, et al. In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions[J]. Renewable Energy, 2021, 180: 372-382.
    [70]
    YAZDANI M, EBRAHIMI-NIK M, HEIDARI A, et al. Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge[J]. Renewable Energy, 2019, 135: 496-501.
    [71]
    AMEN T W M, ELJAMAL O, KHALIL A M E, et al. Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles[J]. Chemical Engineering & Processing-Process Intensification, 2018, 130: 253-261.
    [72]
    BOSCARO M E, MARIN D F C, da SILVA D C, et al. Effect of Fe3O4 nanoparticles on microbial diversity and biogas production in anaerobic digestion of crude glycerol[J]. Biomass & Bioenergy, 2022, 160: 106439.
    [73]
    CERVANTES-AVILES P, IDA J, TODA T, et al. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge[J]. Journal of Environmental Management, 2018, 222: 227-233.
    [74]
    TIAN T, QIAO S, LI X, et al. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion[J]. Bioresource Technology, 2017, 224: 41-47.
    [75]
    HAO Y, WANG Y Y, MA C X, et al. Carbon nanomaterials induce residue degradation and increase methane production from livestock manure in an anaerobic digestion system[J]. Journal of Cleaner Production, 2019, 240(C): 118257.
    [76]
    LIANG Y G, XU L, BAO J, et al. Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community[J]. Renewable Energy, 2020, 145: 222-232.
    [77]
    ZHANG N, ZHENG H Y, HU X H, et al. Enhanced bio-methane production from ammonium-rich waste using eggshell-and lignite-modified zeolite(ELMZ) as a bio-adsorbent during anaerobic digestion[J]. Process Biochemistry, 2019, 81: 148-155.
    [78]
    焦骄. 白腐菌改性连翘残渣吸附剂的制备、表征以及富集连翘酯苷和连翘脂素的应用研究[D]. 哈尔滨: 东北林业大学, 2013.
    [79]
    ZHANG L, ZHANG J X, LOH K C. Activated carbon enhanced anaerobic digestion of food waste-laboratory-scale and pilot-scale operation[J]. Waste Management, 2018, 75: 270-279.
    [80]
    XU H F, YUN S N, WANG C, et al. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite[J]. Bioresource Technology, 2020, 301(C): 122753.
    [81]
    ZHENG H, SHARMA A, MA Q, et al. Development of an oyster shell and lignite modified zeolite(OLMZ) fixed bioreactor coupled with intermittent light stimulation for high efficient ammonium-rich anaerobic digestion process[J]. Chemical Engineering Journal, 2020, 398: 125637.
    [82]
    MA J Y, BASHIR M A, PAN J T, et al. Enhancing performance and stability of anaerobic digestion of chicken manure using thermally modified bentonite[J]. Journal of Cleaner Production, 2018, 183: 11-19.
    [83]
    ZHANG D J, DUAN N, TIAN H L, et al. Comparing two enhancing methods for improving kitchen waste anaerobic digestion: bentonite addition and autoclaved de-oiling pretreatment[J]. Process Safety & Environmental Protection, 2018, 115: 116-124.
    [84]
    SANCHEZ-SANCHEZ C, GONZALEZ-GONZALEZ A, CUADROS-SALCEDO F, et al. Charcoal as a bacteriological adherent for biomethanation of organic wastes[J]. Energy, 2019, 179: 336-342.
    [85]
    LOVLEY D R. Happy together: microbial communities that hook up to swap electrons[J]. Isme Journal, 2017, 11(2): 327-336.
    [86]
    SUMMERS Z M, FOGARTY H E, LEANG C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009): 1413-1415.
    [87]
    KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654.
    [88]
    ZHAO Z S, LI Y, YU Q L, et al. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2018, 250: 79-85.
    [89]
    KAUR M, SAHOO P C, KUMAR M, et al. Effect of metal nanoparticles on microbial community shift and syntrophic metabolism during anaerobic digestion of Azolla microphylla[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105841.
    [90]
    ZHENG S L, LI Z, ZHANG P, et al. Multi-walled carbon nanotubes accelerate interspecies electron transfer between Geobacter cocultures[J]. Bioelectrochemistry, 2020, 131:107346.
    [91]
    ZHAO Z Q, ZHANG Y B, LI Y, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth[J]. Chemical Engineering Journal, 2017, 313: 10-18.
    [92]
    JIA R X, SUN D Z, DANG Y, et al. Carbon cloth enhances treatment of high-strength brewery wastewater in anaerobic dynamic membrane bioreactors[J]. Bioresource Technology, 2020, 298: 122547.
    [93]
    SHAO L M, LI S S, CAI J, et al. Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings[J]. Journal of Cleaner Production, 2019, 238: 117959.
    [94]
    WANG G J, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812-820.
    [95]
    LIU F, ROTARU A E, SHRESTHA P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989.
    [96]
    BARUA S, ZAKARIA B S, LIN L, et al. Magnetite doped granular activated carbon as an additive for high-performance anaerobic digestion[J]. Materials Science for Energy Technologies, 2019, 2(3): 377-384.
    [97]
    SONG X R, LIU J, JIANG Q, et al. Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe3O4[J]. Chemical Engineering Journal, 2019, 374: 1344-1352.
    [98]
    YANG B, XU H, LIU Y B, et al. Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis[J]. Chemical Engineering Journal, 2020, 383(C): 123211.
    [99]
    CHEN S, ROTARU A E, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4(1): 5019.
    [100]
    DONG B, XIA Z H, SUN J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion[J]. Science of the Total Environment, 2019, 646: 1376-1384.
    [101]
    PONZELLI M, ZAHEDI S, KOCH K, et al. Rapid biological reduction of graphene oxide: impact on methane production and micropollutant transformation[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108373.
    [102]
    YIN C K, SHEN Y W, YU Y M, et al. In-situ biogas upgrading by a stepwise addition of ash additives: methanogen adaption and CO2 sequestration[J]. Bioresource Technology, 2019, 282: 1-8.
    [103]
    SHEN Y W, YIN C K, LI C, et al. Biomethane production from waste activated sludge promoted by sludge incineration bottom ash: the distinctive role of metal cations and inert fractions[J]. Science of the Total Environment, 2022, 819: 153147.
    [104]
    NOVAIS R M, GAMEIRO T, CARVALHEIRAS J, et al. High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion[J]. Journal of Cleaner Production, 2018, 178: 258-267.
    [105]
    MONTALVO S, CAHN I, BORJA R, et al. Use of solid residue from thermal power plant(fly ash) for enhancing sewage sludge anaerobic digestion: influence of fly ash particle size[J]. Bioresource Technology, 2017, 244: 416-422.
    [106]
    LO H M, CHIU H Y, LO S W, et al. Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion[J]. Bioresource Technology, 2012, 114: 90-94.
    [107]
    SAILER G, EICHERMVLLER J, POETSCH J, et al. Optimizing anaerobic digestion of organic fraction of municipal solid waste(OFMSW) by using biomass ashes as additives[J]. Waste Management, 2020, 109: 136-148.
    [108]
    LIM J W, CHIAM J A, WANG J Y. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste[J]. Bioresource Technology, 2014, 171: 132-138.
    [109]
    RUAN D N, ZHOU Z, PANG H J, et al. Enhancing methane production of anaerobic sludge digestion by microaeration: enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis[J]. Bioresource Technology, 2019, 289: 121643.
    [110]
    NGUYEN D, WU Z Y, SHRESTHA S, et al. Intermittent micro-aeration: new strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion[J]. Water Research, 2019, 166: 115080.
    [111]
    TUNCAY S, AKCAKAYA M, ICGEN B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation[J]. Fuel, 2022, 313: 122690.
    [112]
    ALFARO N, FDZ-POLANCO M, FDZ-POLANCO F, et al. H2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2019, 280: 1-8.
    [113]
    HAO X D, LIU R B, van LOOSDRECHT M C M, et al. Batch influences of exogenous hydrogen on both acidogenesis and methanogenesis of excess sludge[J]. Chemical Engineering Journal, 2017, 317: 544-550.
    [114]
    WANG H, ZHU X Y, YAN Q, et al. Microbial community response to ammonia levels in hydrogen assisted biogas production and upgrading process[J]. Bioresource Technology, 2020, 296(C): 122276.
    [115]
    BASSANI I, KOUGIAS P G, ANGELIDAKI I. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate[J]. Bioresource Technology, 2016, 221: 485-491.
    [116]
    GARCIA-ROBLEDO E, OTTOSEN L D M, VOIGT N V, et al. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor[J]. Frontiers in Microbiology, 2016, 7: 1276.
    [117]
    LUO G, JOHANSSON S, BOE K, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor[J]. Biotechnology & Bioengineering, 2012, 109(4): 1088-1094.
    [118]
    SARVENOEI F F, ZINATIZADEH A A, ZANGENEH H. A novel technique for waste sludge solubilization using a combined magnetic field and CO2 injection as a pretreatment prior anaerobic digestion[J]. Journal of Cleaner Production, 2018, 172: 2182-2194.
    [119]
    OLESZEK M, KRZEMIN'SKA I. Enhancement of biogas production by co-digestion of maize silage with common goldenrod rich in biologically active compounds[J]. Bioresources, 2017, 12(1): 704-714.
    [120]
    OLESZEK M, KOZACHOK S. Antioxidant activity of plant extracts and their effect on methane fermentation in bioreactors[J]. International Agrophysics, 2018, 32(3): 395-401.
    [121]
    田云, 王翀, 卢向阳, 等. 植物次生代谢产物在生物质厌氧消化中的应用:CN107299116B[P]. 2021-05-28.
  • Relative Articles

    [1]CHU Yangyang, LI Hui, ZHU Yanping, HAN Xiaomeng, SHU Shihu. A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 38-48. doi: 10.13205/j.hjgc.202407004
    [2]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [3]XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013
    [4]ZHANG Tao, WANG Xiahui, BI Erping, HUANG Guoxin, YANG Ruijie. GROUNDWATER VULNERABILITY EVALUATION AND RISK CONTROL IN A CERTAIN AREA IN NORTHERN GUANGDONG PROVINCE BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 270-277. doi: 10.13205/j.hjgc.202312034
    [5]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [6]YUAN Ye, GAO Jun, ZHANG Lulu, CHEN Tianming, DING Cheng. RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 69-77. doi: 10.13205/j.hjgc.202311013
    [7]PEI Lifeng, CHEN Weijie, XU Jingsheng, LÜ Lu. MODEL PREDICTIVE CONTROL FOR ACCURATE DOSING IN WASTEWATER TREATMENT PLANTS BASED ON SELF-ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 84-92,140. doi: 10.13205/j.hjgc.202311015
    [8]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [9]HUANG Yanpeng, WANG Yuanhao, WANG Chao, LIU Weijiang, WANG Hong, LV Guangfeng, LIN Sijie, HU Qing. CHARACTERISTICS ANALYSIS AND ZONING CONTROL OF GROUNDWATER POLLUTION BASED ON SELF-ORGANIZING MAPS AND K-MEANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 31-41,47. doi: 10.13205/j.hjgc.202206004
    [10]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [11]LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
    [12]HU Xiangang, LI Jiawei, LI Jiaqiang, JIN Hongye, YU Fubo. SCIENTIFIC QUESTIONS ON THE BIOLOGICAL EFFECTS OF NANOMATERIALS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 171-181. doi: 10.13205/j.hjgc.202206022
    [13]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [14]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [15]LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013
    [16]HE Zhe-xiang, LI Lei. AN AIR POLLUTANT CONCENTRATION PREDICTION MODEL BASED ON WAVELET TRANSFORM AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 111-119. doi: 10.13205/j.hjgc.202103016
    [17]LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016
    [18]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [19]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
  • Cited by

    Periodical cited type(14)

    1. 江雨燕,黄体臣,甘如美江,王付宇. 融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用. 安全与环境学报. 2025(01): 296-309 .
    2. 杨帆,毛腾跃,占伟. 基于PCA-Informer~+模型的周期性甲烷菌体浓度预测研究. 中南民族大学学报(自然科学版). 2025(03): 393-399 .
    3. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 .
    4. 张雅波,陈春晖. 融合情绪分析和Informer-ARIMA模型的比特币价格预测方法. 现代信息科技. 2024(09): 131-135 .
    5. 陆钊,龙法宁,陈国年. 基于时间序列的发电机设备异常分析. 现代信息科技. 2024(12): 121-124 .
    6. 王鲁君,孙永华,刘洪涛,于秋红,郝浚杰. 基于多尺度特征Informer模型的受热面积灰预测研究. 山东电力高等专科学校学报. 2024(03): 35-40 .
    7. 马愈昭,张宇航,王凌飞. TimeGAN-Informer长时机场能见度预测. 安全与环境学报. 2024(07): 2517-2527 .
    8. 何志铧,熊祖强. 基于Informer神经网络的工作面矿压预测研究. 矿业研究与开发. 2024(07): 142-148 .
    9. 刘妙男,王魏,胡显辉,许德昊. 基于因果卷积和Informer模型的城市公交客流预测. 控制工程. 2024(08): 1445-1454 .
    10. 安昱宁,朱四富,刘静,杜立伟,刘长青. 基于深度学习的污水处理厂出水总磷预测方法. 工业水处理. 2024(10): 143-150 .
    11. 何宇涵. 基于自注意力机制的PM_(2.5)长时间尺度预测. 长江信息通信. 2024(10): 72-75 .
    12. 王伟,王海云,黄晓芳. 基于Informer的风电机组叶根载荷预测. 水力发电. 2023(09): 85-89 .
    13. 董子敬,李凡,孙宏,朱梦媛,范博艺. 基于Informer模型的进近阶段工作负荷管理胜任力评估. 飞行力学. 2023(05): 81-87 .
    14. 蒲维,杨毅强,张渊博,付江涛,宋弘. 基于NGO-VMD-FCBF-Informer的电力负荷组合预测模型. 智能计算机与应用. 2023(11): 135-141 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.8 %FULLTEXT: 16.8 %META: 80.4 %META: 80.4 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.5 %其他: 15.5 %其他: 0.4 %其他: 0.4 %China: 0.9 %China: 0.9 %Kao-sung: 0.4 %Kao-sung: 0.4 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.1 %[]: 0.1 %三亚: 0.1 %三亚: 0.1 %上海: 1.6 %上海: 1.6 %东莞: 1.9 %东莞: 1.9 %东营: 0.1 %东营: 0.1 %临汾: 0.1 %临汾: 0.1 %九江: 0.3 %九江: 0.3 %六安: 0.8 %六安: 0.8 %北京: 3.8 %北京: 3.8 %十堰: 0.1 %十堰: 0.1 %南京: 1.6 %南京: 1.6 %南充: 0.1 %南充: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.5 %台北: 0.5 %台州: 0.1 %台州: 0.1 %合肥: 1.6 %合肥: 1.6 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %娄底: 0.1 %娄底: 0.1 %宜春: 0.8 %宜春: 0.8 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广州: 1.4 %广州: 1.4 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.4 %张家口: 1.4 %德罕: 0.4 %德罕: 0.4 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.3 %晋城: 0.3 %曲靖: 0.1 %曲靖: 0.1 %朝阳: 1.0 %朝阳: 1.0 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.3 %格兰特县: 0.3 %武汉: 1.8 %武汉: 1.8 %永州: 0.5 %永州: 0.5 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %济南: 0.9 %济南: 0.9 %济源: 0.3 %济源: 0.3 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.6 %湘潭: 0.6 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.3 %福州: 0.3 %芒廷维尤: 34.7 %芒廷维尤: 34.7 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 1.0 %苏州: 1.0 %荆州: 0.3 %荆州: 0.3 %衡水: 0.3 %衡水: 0.3 %衢州: 0.5 %衢州: 0.5 %襄阳: 0.1 %襄阳: 0.1 %西宁: 6.1 %西宁: 6.1 %西安: 1.1 %西安: 1.1 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.3 %运城: 1.3 %遵义: 0.1 %遵义: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 3.3 %鄂州: 3.3 %重庆: 0.6 %重庆: 0.6 %长沙: 0.4 %长沙: 0.4 %青岛: 0.6 %青岛: 0.6 %马鞍山: 0.4 %马鞍山: 0.4 %黄冈: 0.3 %黄冈: 0.3 %其他其他ChinaKao-sungSeattle[]三亚上海东莞东营临汾九江六安北京十堰南京南充南通厦门台北台州合肥哈尔滨嘉兴天津太原娄底宜春宣城宿州常州常德广州廊坊张家口德罕成都扬州昆明晋城曲靖朝阳杭州格兰特县武汉永州沈阳沧州济南济源湖州湘潭漯河烟台石嘴山石家庄福州芒廷维尤芝加哥苏州荆州衡水衢州襄阳西宁西安贵阳运城遵义郑州鄂州重庆长沙青岛马鞍山黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads(8) Cited by(31)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return