Citation: | CUI Ruoqi, CHE Xiangqian, LU Zhen, LI Yingnan, WANG Pan, REN Lianhai. EFFECT OF HYDROTHERMAL TREATMENT ON DEGREASING PROPERTY AND PHYSICAL AND CHEMICAL PROPERTIES OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 204-211. doi: 10.13205/j.hjgc.202404024 |
[1] |
石川,李坤,边潇,等. 餐厨垃圾厌氧处理"碳中和"综合效益评价[J].中国环境科学,2023,43(1):436-445.
|
[2] |
王巧玲,陈泽智,龚惠娟,等. 含油量对餐厨垃圾厌氧发酵的影响[J].环境工程学报,2012,6(12):4637-4641.
|
[3] |
易志刚.餐厨垃圾收运与资源化利用研究进展[J].中国资源综合利用,2021,39(12):116-119
,125.
|
[4] |
曹书翰,陈立功,刘先杰,等. 餐厨垃圾油水分离技术与方法研究[J].环境卫生工程,2012,20(2):39-42.
|
[5] |
BARAMPOUTI E M, MAI S, MALAMIS D, et al. Liquid biofuels from the organic fraction of municipal solid waste: a review[J]. Renewable and Sustainable Energy Reviews,2019,110:298-314.
|
[6] |
任连海,聂永丰,刘建国,等. 餐厨垃圾湿热处理的影响因素[J].清华大学学报(自然科学版),2006,46(9):1551-1554,1559.
|
[7] |
昋永强,樊静波. 餐厨废弃物油脂提取技术的研究[J].河南科技,2013(21):30-31.
|
[8] |
KARMEE S K, LINARDI D, LEE J, et al. Conversion of lipid from food waste to biodiesel[J]. Waste Management,2015,41:169-173.
|
[9] |
BARIK S, PAUL K K. Potential reuse of kitchen food waste[J]. Journal of Environmental Chemical Engineering,2017,5(1):196-204.
|
[10] |
XIE T, ZHANG Z H, SUN M, et al. Effect of hydrothermal pretreatment on the degrease performance and liquid substances transformation of kitchen waste[J]. Environmental Research,2022,205:112537.
|
[11] |
宁娜,任连海,王攀,等. 湿热-离心法分离餐厨废油脂[J].环境科学研究,2011,24(12):1430-1434.
|
[12] |
任连海,聂永丰,刘建国,等. 湿热处理参数对餐厨垃圾脱水和脱油性能的影响[J].环境科学,2006,27(9):1906-1911.
|
[13] |
XIE T, ZHANG Z H, ZHANG D, et al. Hydrothermal pretreatment and compound microbial agents promoting high-quality kitchen waste compost: superior humification degree and reduction of odour[J]. Science of the Total Environment,2023,862:160657.
|
[14] |
国家环境保护总局. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,2009.
|
[15] |
GB 5009.6—2016食品安全国家标准 食品中粗脂肪的测定[S].
|
[16] |
HJ/T 399— 2007水质 化学需氧量的测定 快速消解分光光度法[S].
|
[17] |
任安东,郑义,孙天姿,等. 沼液回流时间对厨余垃圾高含固厌氧发酵的影响[J].环境工程,2021,39(12):159-165
,140.
|
[18] |
QI G X, MENG W, ZHA J, et al. A novel insight into the influence of thermal pretreatment temperature on the anaerobic digestion performance of floatable oil-recovered food waste: intrinsic transformation of materials and microbial response[J]. Bioresource Technology,2019,293:122021.
|
[19] |
任连海,金宜英,刘建国,等. 餐厨垃圾固相油脂液化及分离回收的影响因素[J].清华大学学报(自然科学版),2009,49(3):386-389.
|
[20] |
靳俊平,宋玉山,张瑞清,等. 餐厨垃圾油脂分离技术研究及应用[J].环境卫生工程,2014,22(3):36-38.
|
[21] |
袁振宏,邢涛,胡克勤,等. 一种基于撞击流原理的餐厨垃圾除油水解装置及其除油水解方法,CN105057315A[P]. 2015.
|
[22] |
王宇卓,任连海,聂永丰. 采用正交实验优化湿热法处理厨余垃圾的工艺条件[J].环境污染治理技术与设备,2005,6(10):56-60.
|
[23] |
任连海,聂永丰. 餐厨废油高效分离回收工艺研究[J].城市管理与科技,2009,11(4):52-55.
|
[24] |
郑苇,刘淑玲,闵海华,等. 餐饮垃圾提油中试实验的加热釜参数选择[J].环境工程学报,2016,10(12):7305-7309.
|
[25] |
贾璇,王勇,任连海,等. 湿热预处理对北京市典型餐厨垃圾生物制氢潜力的影响[J].环境工程学报,2017,11(11):6034-6040.
|
[26] |
任连海,聂永丰,刘建国,等. 餐厨垃圾湿热处理对其脱出液的影响[J].中国给水排水,2006,22(3):73-76.
|
[27] |
赵国鹏,李鸣晓,席北斗,等. 湿热水解处理餐厨垃圾氮素转化规律[J].环境工程学报,2013,7(10):4061-4066.
|
[28] |
JIN Y Y, LI Y Y, LI J H. Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion[J]. Journal of Environmental Management,2016,180(9):291-300.
|
[29] |
连红民,彭冲,邓舟,等. 深圳市餐厨垃圾湿热水解改性中试研究[J].环境保护科学,2021,47(4):101-105.
|
[30] |
朱金龙,魏自民,贾璇,等. 湿热水解预处理对餐厨废弃物液相物质转化的影响[J].环境科学研究,2015,28(3):440-446.
|
[31] |
FONSECA Y A D, SILVA N C S, CAMARGOS A B, et al. Influence of hydrothermal pretreatment conditions, typology of anaerobic digestion system, and microbial profile in the production of volatile fatty acids from olive mill solid waste[J]. Journal of Environmental Chemical Engineering,2021, 9(2):105055.
|
[32] |
程晓格,王琬,邓冠勇,等. 油脂和盐分对餐厨垃圾厌氧消化影响及缓解抑制研究进展[J].应用化工,2023,52(2):534-539.
|
[33] |
DING L K, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology,2017,241: 491-499.
|
[34] |
WANG Y J, WANG S T, YAN X Y, et al. Preparation of liquid bacteria fertilizer with phosphate-solubilizing bacteria cultured by food wastewater and the promotion on the soil fertility and plants biomass[J]. Journal of Cleaner Production,2022,370: 133328.
|
[35] |
LI Y Y, JIN Y Y, LI J H. Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste[J]. Energy,2016,102(5):139-147.
|
[36] |
LI Y Y, JIN Y Y, LI J H. Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment[J]. Energy,2016, 98 (3):155-167.
|
[37] |
柴春山,莫保儒,蔡国军,等. 甘肃迭部野生西康扁桃种仁油理化性质及脂肪酸组成分析[J].中国粮油学报,2023,38(6):98-105.
|
[38] |
吴清莲. 餐厨垃圾厌氧发酵产挥发性脂肪酸的研究[D].哈尔滨:哈尔滨工业大学,2015.
|
[39] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology,2003,37(24):5701-5710.
|
[40] |
SUN J, GUO L, LI Q Q, et al. Three-dimensional fluorescence excitation-emission matrix (EEM)spectroscopy with regional integration analysis for assessing waste sludge hydrolysis at different pretreated temperatures[J]. Environmental Science & Pollution Research,2016,23:24061-24067.
|
[41] |
LI X W, DAI X H, TAKAHASHI J, et al. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J]. Bioresource Technology,2014,159:412-420.
|
[1] | YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022 |
[2] | ZHANG Da, LIN Qingshan, CUI Peng, CHENG Boyi, WANG Zongping, GUO Gang. EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015 |
[3] | YUAN Yue, WANG Bo, LI Yongbo, KE Hang, ZHAO Shuiqian. ENHANCEMENT OF CO-DIGESTION OF SLUDGE AND FOOD WASTE BY HIGH TEMPERATURE PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 91-97. doi: 10.13205/j.hjgc.202302013 |
[4] | FAN Xinqi, CHEN Rui, LI Wanting, WEI Yuquan, LIU Yongdi, ZHAN Yabin, LI Ji. EFFECT OF VENTILATION ON DECOMPOSITION AND NITROGEN CONVERSION OF RAPID THERMOPHILIC COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 71-78. doi: 10.13205/j.hjgc.202204011 |
[5] | CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015 |
[6] | QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007 |
[7] | HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014 |
[8] | LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027 |
[9] | GUO Zhi-chao, XU Xian-bao, XU Ting-ting, ZHAO Ai-hua, TAI Jun, LIU Ya-nan, XUE Gang, LI Xiang. ANALYSIS ON FERMENTATION PATHWAY AND CAPROATE PRODUCTION FROM FOOD WASTE BY DIFFERENT INOCULUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 160-168. doi: 10.13205/j.hjgc.202109023 |
[10] | ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017 |
[11] | LIU Hang-yi, YAN Bei-bei, LIN Fa-wei, WANG Yuan, WANG Xu-tong, CHEN Guan-yi. COMPARATIVE ANALYSIS OF TWO KINDS OF FOOD WASTE RECYCLING SCHEMES FROM THE PERSPECTIVE OF LCA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 169-175. doi: 10.13205/j.hjgc.202109024 |
[12] | ZHU Xiao-yan, CHEN Ting, ZHAO Ying-ying, QIU Xiao-peng, YIN Jun, FENG Hua-jun, ZHANG Jin-feng. INFLUENCING FACTORS OF THE SCALE OF FOOD WASTE TREATMENT IN CHINA: STATISTICAL ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 172-177,53. doi: 10.13205/j.hjgc.202103024 |
[13] | LIANG Jian-ru, YAN Cheng, WANG Dian-zhan, XIONG You-wen, ZHOU Li-xiang. A PILOT STUDY ON BIO-CONVERSION OF RESTAURANT FOOD WASTE BY FLY MAGGOTS AND THE RELATED EQUIPMENTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 166-171,205. doi: 10.13205/j.hjgc.202112025 |
[14] | SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015 |
[15] | CHEN Yi-shuang, WEI Tao-yuan, ZHOU Tao, DONG Ding-shuo, LIN Qing-shan, WANG Zong-ping, GUO Gang. EFFECT OF ELECTROCHEMICAL PRETREATMENT ON PRODUCTION OF VOLATILE FATTY ACIDS BY CO-ANAEROBIC FERMENTION OF FOOD WASTE AND SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 187-192. doi: 10.13205/j.hjgc.202109026 |
[16] | LIAO Li-ming, PAN Jia-qi, CHEN Yu, HU Yao-yuan, MO Hui, LU Yu, SU Cheng-yuan. ANALYSIS OF EFFECT OF ADDITION OF CHINESE HERBAL RESIDUE ON FOOD WASTE COMPOSTING BASED ON EEM AND HIGH-THROUGHPUT SEQUENCING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 142-147. doi: 10.13205/j.hjgc.202101022 |
[17] | SONG Na, REN Yuan-yuan, WANG Wan-qing, ZHANG Li-rong, GUAN Wei-jie, ZHANG Shuang, WANG Qun-hui. MECHANISM ANALYSIS OF BACTERIOSTATIC EFFECT ON FOOD WASTE ANAEROBIC PRESERVATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 41-46. doi: 10.13205/j.hjgc.202008007 |
[18] | LI Tong, WANG Pan, CHEN Xi-teng, ZHAO Ze-xi, MA Li-juan, REN Lian-hai. DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE AND FOOD WASTE AND ALLEVIATION OF ACID INHIBITION BY ACTIVATED CARBON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 213-218. doi: 10.13205/j.hjgc.202009034 |
[19] | ZHOU Jian-hua, CHEN Feng. AN EXAMPLE OF A TYPICAL KITCHEN WASTE COMPREHENSIVE TREATMENT PROJECT IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 47-51. doi: 10.13205/j.hjgc.202008008 |
[20] | STUDY ON THE START-UP TECHNOLOGY OF TREATING KITCHEN WASTE IN IC ANAEROBIC REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 87-90. doi: 10.13205/j.hjgc.201412015 |
1. | 李懿南,刘莹,侯锋,庞洪涛,徐恒,江乐勇,周晓,赵鹏宇,陈湘泽,舒新前,王刚. 餐厨垃圾湿热水解及其液相产物反硝化性能研究. 中国沼气. 2024(05): 30-38 . ![]() |