Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
Citation: XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027

A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK

doi: 10.13205/j.hjgc.202404027
  • Received Date: 2023-05-17
    Available Online: 2024-06-01
  • Garbage siege has always been a big problem in China’s urban management. Aiming at the difficulties of the recyclable waste disposal process, this paper proposed a system based on the improved Inception ResNet V2 network combined with the ROBOT MG400 robotic arm for automatic sorting of recyclable waste. Firstly, we improved the fixture on the MG400 robotic arm to make it more suitable for garbage grabbing. Then, we independently created a dataset of 50850 sheets, based on which the garbage images were processed by background noise reduction, image classification, and voting algorithms, and the CBAM attention mechanism was added to the output layer of the Inception ResNet V2 network to improve the accuracy of model recognition. Finally, the whole system was experimentally verified. The verification results showed that the system could classify garbage more accurately and collect it into the corresponding garbage collection container, and the recognition accuracy was 99.35% and 95.39% when the conveyor belt was stationary and running, the mAP value of the improved network was 2.56% higher than that of the original model, and the sorting efficiency of the system reached 60 pieces per minute. Therefore, this system can independently complete the sorting of recyclable waste with high efficiency, high accuracy, and high precision.
  • [1]
    贺嘉妮,刘意立,李竺霖,等. 生活垃圾分类运输能耗分析[J]. 环境工程,2021,39(10):136-142.
    [2]
    任中山,陈瑛,王永明,等. 生活垃圾分类对垃圾焚烧发电产业发展影响的分析[J]. 环境工程,2021,39(6):150-153

    ,206.
    [3]
    何汶峰,郑宇,刘蓓蓓,等. 垃圾分类政策对垃圾焚烧大气污染排放的影响[J].中国环境科学,2022,42(5):2433-2441.
    [4]
    金宜英,邴君妍,罗恩华,等. 基于分类趋势下的我国生活垃圾处理技术展望[J]. 环境工程,2019,37(9):149-153

    ,130.
    [5]
    袁建野,南新元,蔡鑫,等. 基于轻量级残差网路的垃圾图片分类方法[J]. 环境工程,2021,39(2):110-115.
    [6]
    张月文,李松恒,张炜,等. 基于机器视觉的可回收垃圾智能分拣系统设计[J]. 实验室研究与探索,2022,41(7):98-103

    ,107.
    [7]
    ABEYWICKRAMA T, CHEEMA M A, TANIAR D. K-nearest neighbors on road networks: a journey in experimentation and in-memory implementation[J]. Proceedings of the Vldb Endowment, 2016, 9(6): 492-503.
    [8]
    康庄,杨杰,郭濠奇. 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报(工学版),2020,54(7):1272-1280,1307.
    [9]
    SUN Q R, LIU Y Y, CHEN Z Z, et al. Meta-transfer learning through hard tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(3): 1443-1456.
    [10]
    XIE W Z, LI S P, XU W, et al. Study on the CNN model optimization for household garbage classification based on machine learning[J]. Journal of Ambient Intelligence and Smart Environments,2022,14(6):439-454.
    [11]
    梅志敏,陈艳,胡杭,等. 机器人与机器视觉的垃圾分拣系统设计[J]. 机械设计与制造,2022(4):275-278.
    [12]
    ZHAO Y, HUANG H C, LI Z X, et al. Intelligent garbage classification system based on improve MobileNetV3-Large[J]. Connection Science,2022,34(1).
    [13]
    程镕杰,杨耘,李龙威,等. 基于深度可分离卷积的轻量化残差网络高光谱影像分类[J]. 光学学报,2023,43(12):303-312.
    [14]
    张栋,姜媛媛. 融合注意力机制与逆残差结构的轻量级钻机目标检测方法[J]. 电子测量与仪器学报,2022,36(11):201-210.
    [15]
    卢鹏,曹阳,邹国良,等. 改进Shufflenetv2_YOLOv5的轻量级SAR图像舰船目标实时检测[J].海洋测绘,2023,43(1):58-62

    ,82.
    [16]
    LIN K S, ZHOU T, GAO X F, et al. Deep convolutional neural networks for construction and demolition waste classification: VGGNet structures, cyclical learning rate, and knowledge transfer[J]. Journal of Environmental Management,2022,318:115501.
    [17]
    HAYAT M, BENNAMOUN M, AN S J. Deep reconstruction models for image set classification[J]. IEEE transactions on pattern analysis and machine intelligence,2015,37(4).
    [18]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
    [19]
    SZEGEDY C, IOFFE S,VANHOUCKE V.Inception-v4,lnception-ResNet and the impact of residual connections on learning[J].arXiv:1602.07261,2016.
    [20]
    刘星辰,周奇才,赵炯,等. 一维卷积神经网络实时抗噪故障诊断算法[J]. 哈尔滨工业大学学报,2019,51(7):89-95.
    [21]
    SZEGEDY C,LOFFE S,VANHOUCKE V, et al.Inception-v4,inception-resnet and the impact of residual connections onlearning[C]//Proceedings of Association for the Advance of Artificial Intelligence.Menlo Park:AAAI,2017:4-12.
    [22]
    刘星辰,周奇才,赵炯,等. 一维卷积神经网络实时抗噪故障诊断算法[J]. 哈尔滨工业大学学报,2019,51(7):89-95.
    [23]
    BUTERA L,FERRANTE A,JERMINI M, et al. Precise agriculture: effective deep learning strategies to detect pest insects[J].IEEE/CAA Journal of Automatica Sinica,2022,9(2):246-258.
    [24]
    HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//29th lEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:lEEE Computer Society,2016:770-778.
    [25]
    马燕,余海军,钟发生,等. 基于残差编解码网络的CT图像金属伪影校正[J]. 仪器仪表学报,2020,41(8):160-169.
    [26]
    范敏,孟鑫余,夏嘉璐,等. 云边协同下基于深度迁移网络的配电台区异常工况诊断方法[J]. 电机与控制学报,2023,27(1):128-138.
    [27]
    肖鹏程,徐文广,张妍,等. 基于SE注意力机制的废钢分类评级方法[J]. 工程科学学报,2023,45(8):1342-1352.
    [28]
    WOO S,PARK J,LEE J Y,et al.Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19.
    [29]
    樊继慧,滕少华,金弘林. 基于改进Sigmoid卷积神经网络的手写体数字识别[J]. 计算机科学,2022,49(12):244-249.
    [30]
    肖蔓君,陈思颖,倪国强,等. 基于Sigmoid函数局部视觉适应模型的真实影像再现[J]. 光学学报,2009,29(11):3050-3056.
    [31]
    王绍文,宋鹏,谭军,等. 基于QHAdam梯度优化算法的最小二乘逆时偏移[J]. 地球物理学报,2022,65(7):2673-2680.
    [32]
    陈纪宏,卞荣星,张听雪,等. 垃圾分类对碳减排的影响分析:以青岛市为例[J].环境科学,2023,44(5):2995-3002.
    [33]
    张天,孙连英,杨琰,等. 基于改进残差网络的陷落柱识别方法[J]. 煤田地质与勘探,2023,5(5):171-179.
    [34]
    张洪,盛永健,黄子龙,等. 基于W-DenseNet的减压阀不平衡样本故障诊断模型[J]. 控制与决策,2022,37(6):1513-1520.
    [35]
    白中浩,李智强,蒋彬辉,等. 基于改进YOLOv2模型的驾驶辅助系统实时行人检测[J]. 汽车工程,2019,41(12):1416-1423.
  • Relative Articles

    [1]ZHOU Lei, LI Yalan, ZHANG Chaoqun, SONG Wen, YANG Kun, DU Mingyi, CHEN Qiang, LIU Yang. RESEARCH PROGRESS ON MONITORING AND SIMULATION OF SPATIAL DISTRIBUTION, VOLUME AND VARIATION OF CONSTRUCTION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 243-253. doi: 10.13205/j.hjgc.202403030
    [2]ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
    [3]LIU Zhi, GAO Dongming. APPLICATION AND COMPARISON OF DIFFERENT DEEP LEARNING MODELS IN RECOGNITION OF FOOD WASTE TYPES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 254-260. doi: 10.13205/j.hjgc.202403031
    [4]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [5]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [6]ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014
    [7]PEI Lifeng, CHEN Weijie, XU Jingsheng, LÜ Lu. MODEL PREDICTIVE CONTROL FOR ACCURATE DOSING IN WASTEWATER TREATMENT PLANTS BASED ON SELF-ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 84-92,140. doi: 10.13205/j.hjgc.202311015
    [8]YUAN Hongchun, ZANG Tianqi. DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 214-221. doi: 10.13205/j.hjgc.202307029
    [9]ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004
    [10]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [11]JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
    [12]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [13]WEI Chenglei, NAN Xinyuan, LI Chengrong, LUO Yangyu. A SINGLE-STAGE OBJECT DETECTION METHOD FOR DOMESTIC GARBAGE BASED ON MULTI-SCALE RECEPTIVE FIELD ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 175-183. doi: 10.13205/j.hjgc.202201026
    [14]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [15]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [16]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [17]LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013
    [18]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.2 %FULLTEXT: 13.2 %META: 84.6 %META: 84.6 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 27.9 %其他: 27.9 %Seattle: 0.7 %Seattle: 0.7 %北京: 2.9 %北京: 2.9 %台州: 1.5 %台州: 1.5 %合肥: 0.7 %合肥: 0.7 %天津: 2.2 %天津: 2.2 %常德: 0.7 %常德: 0.7 %张家口: 8.8 %张家口: 8.8 %成都: 2.9 %成都: 2.9 %扬州: 0.7 %扬州: 0.7 %昆明: 0.7 %昆明: 0.7 %杭州: 1.5 %杭州: 1.5 %沧州: 0.7 %沧州: 0.7 %泰安: 0.7 %泰安: 0.7 %漯河: 2.9 %漯河: 2.9 %芒廷维尤: 29.4 %芒廷维尤: 29.4 %芝加哥: 7.4 %芝加哥: 7.4 %衢州: 1.5 %衢州: 1.5 %贵阳: 0.7 %贵阳: 0.7 %运城: 2.2 %运城: 2.2 %遵义: 0.7 %遵义: 0.7 %郑州: 0.7 %郑州: 0.7 %重庆: 0.7 %重庆: 0.7 %长沙: 0.7 %长沙: 0.7 %其他Seattle北京台州合肥天津常德张家口成都扬州昆明杭州沧州泰安漯河芒廷维尤芝加哥衢州贵阳运城遵义郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(3) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return