Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QUAN Zhaoxi, CHEN Xiangsheng, CHEN Feng, GAO Wang, HAN Wenlong. ANALYSIS OF CARBON REDUCTION EFFECT OF TUNNEL CONSTRUCTION MUCK SOIL UTILIZATION BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 91-98,162. doi: 10.13205/j.hjgc.202310012
Citation: LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028

EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS

doi: 10.13205/j.hjgc.202404028
  • Received Date: 2023-05-29
    Available Online: 2024-06-01
  • The current research regarding the remediation of total petroleum hydrocarbon (TPH) contaminated soils largely ignores the effect of soil structures, and cannot provide either good temperature control or reasonable design of heating and extraction tubes. To address this issue, a new bench-scale thermal remediation apparatus has been developed to conduct thermal remediation tests of TPH-contaminated soils. The test results showed that the remediation effect of TPH(C6 to C9) was significantly affected by the heating temperature and heating time. The thermal remediation effect of contaminated soils showed large divergence at different locations within the insulation tank, and a good remediation effect is usually accomplished by shorter distances from the heating tube, extraction tube as well as soil surface; the influence from top cover system of the soil surface was however limited. It was also found that the particle components, pH value, contents of nitrogen, phosphorus and potassium of the contaminated soils showed small changes after thermal remediation, and the content of organic matter and moisture content had been significantly reduced. The novel apparatus developed in this study is expected to contribute to the improvement of in-situ thermal remediation technology of TPH-contaminated soils. The findings are supposed to be useful for the selection of operating parameters of thermal remediation technology in the prescribed field as well as environmental assessment.
  • [1]
    葛锋, 张转霞, 扶恒, 等. 我国有机污染场地现状分析及展望[J]. 土壤, 2021, 53(6): 1132-1141.
    [2]
    张学良, 李群, 周艳, 等. 某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报, 2018, 38(7): 2868-2875.
    [3]
    詹明秀,刘立朋,顾海林,等. 原位热修复过程中土壤内热质传递研究现状与展望[J]. 环境工程学报, 2022, 16(4): 1272-1283.
    [4]
    陈俊华, 李绍华, 刘晋恺, 等. 燃气热脱附技术土壤修复效果及影响因素[J]. 环境工程学报, 2022, 16(5): 1610-1619.
    [5]
    谢炳坤,姜祖明,曾俊,等. 多环芳烃类污染场地应用原位电热脱附技术的能效分析[J]. 环境工程, 2021, 39(8): 173-178

    , 187.
    [6]
    籍龙杰, 刘鹏, 韦云霄, 等. 单根加热管原位加热土壤过程中温度变化规律[J]. 环境工程, 2019, 37(2): 165-169.
    [7]
    高国龙,蒋建国,李梦露. 有机物污染土壤热脱附技术研究与应用[J]. 环境工程, 2012,30(1): 128-131.
    [8]
    李晓杰, 张文文, 马传博, 等. 热强化气相抽提修复东北地区苯污染土壤研究[J]. 环境工程, 2022, 40(4): 134-139

    , 187.
    [9]
    JULIA E V, KYRIACOS Z, CAROLINE A M, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506.
    [10]
    ZIVDAR Z, HEIDARZADEH N, ASADOLLAHFARDI G. Remediation of diesel-contaminated soil by low-temperature thermal desorption[J]. International Journal of Environmental Science & Technology, 2019, 16(10): 6113-6124.
    [11]
    WENG M C, LIN C L, LEE C H. Effect of heat-treatment remediation on the mechanical behavior of oil-contaminated soil[J]. Applied Sciences, 2020, 10(9): 3174.
    [12]
    REN J Q, SONG X, DING D. Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment: improved energy efficiency and soil reusability[J]. Chemosphere, 2020, 241: 124952.
    [13]
    YONG M Y, SOYOUNG P, CLYDE M, et al. Changes in ecological properties of petroleum oil-contaminated Soil after low-temperature thermal desorption treatment[J]. Water Air & Soil Pollution, 2016, 227(4): 1-18.
    [14]
    陈星, 宋昕, 吕正勇. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844.
    [15]
    O’BRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties: a review[J]. Journal of Environmental Management, 2018, 206: 826-835.
    [16]
    蒋村, 孟宪荣, 施维林, 等. 氯苯污染土壤低温原位热脱附修复[J]. 环境工程学报, 2019, 13(7): 1720-1726.
    [17]
    郭昊. 热强化气相抽提去除土壤中三氯乙烯的试验研究[D]. 郑州: 华北水利水电大学, 2020.
    [18]
    孙袭明. 有机污染土壤热脱附技术的影响因素研究及模拟系统开发[D]. 天津: 天津大学, 2018.
    [19]
    DAVID B, CLARA M. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils[J]. Arid Soil Research and Rehabilitation, 2003, 17(1): 23-41.
    [20]
    内部交流, 天津农药股份有限公司污染场地热脱附修复设计, 北京建工环境修复股份有限公司, 2021.
    [21]
    水质挥发性石油烃的测定 吹扫捕集 气相色谱法(C6—C9)(征求意见稿)[S]. 上海: 环境监测中心, 2017.
    [22]
    DALLAS W G, DALE W J, ROBERT R B, et al. Factors affecting mineral nitrogen transformations by soil heating: a laboratory-simulated fire study[J]. Soil Science, 2008, 173(6): 387-400.
    [23]
    黄晓露, 戴勤, 梁文汇, 等. 桂西北板栗园区土壤养分含量分析及评价[J]. 西南农业学报, 2022, 35(12): 2827-2835.
    [24]
    王小雨, 冯江, 王静. 莫莫格湿地油田开采区土壤石油烃污染及对土壤性质的影响[J]. 环境科学, 2009, 30(8): 2394-2401.
    [25]
    廉景燕, 哈莹, 黄磊, 等. 石油污染土壤物化修复前后生物毒性效应[J]. 环境科学, 2011, 32(3): 870-874.
  • Relative Articles

    [1]YANG Yi, ZHAO Rui, ZHENG Zhenze, SHU Qilin, LIU Wei. FLUORESCENT COMPONENTS, MOLECULAR PROPERTIES AND SOURCES OF DOM IN SECONDARY EFFLUENT OF MUNICIPAL SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 66-72. doi: 10.13205/j.hjgc.202412009
    [2]LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005
    [3]LI Xuxia, WANG Yudong, XIAO Youpeng, XU Xu, WANG Haipeng, CHEN Yimeng, LIN Junchuan, HUANG Guisong, HUANG Zhenguo, SUN Ping, MAI Youquan, YANG Shangbo, XU Wang. QUALITY MONITORING OF SHENZHEN’S COASTAL WATERS BY SATELLITE AND ITS SPATIOTEMPORAL VARIATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 243-252. doi: 10.13205/j.hjgc.202401031
    [4]HE Tian, XUE Chonghua, SUN Jiarong, HAN Songlei, LÜ Yongpeng, LI Junqi, WANG Jianlong. RESEARCH PROGRESS ON FORMS AND INFLUENCING FACTORS OF NITROGEN AND PHOSPHORUS IN PARTICULATE MATTERS IN URBAN STORMWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 61-71. doi: 10.13205/j.hjgc.202408008
    [5]QIU Boran, XIA Yijia, BI Jingran, YU Tao, LIN Tong, ZHANG Hanqi, MA Fengmin, ZHEN Guangyin. CARBON EMISSION REDUCTION POTENTIAL FROM CHINA MUNICIPAL SOLID WASTE SORTING TREATMENT BASED ON THE “TWO NETWORKS INTEGRATION” MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 183-191. doi: 10.13205/j.hjgc.202405023
    [6]GENG Jiao, WANG Yang, HU Shugang, WEI Yanjie, SUN Fei, YUAN Peng. WQI-BASED WATER QUALITY ASSESSMENT AND SPATIAL-TEMPORAL CHANGE IN PLAIN RIVER NETWORK AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 187-193,209. doi: 10.13205/j.hjgc.202306025
    [7]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [8]WANG Zhenhua, WU Juan, SONG Jianguo, BAI Jie. EFFECTS OF THERMAL HYDROLYSATES FROM MUNICIPAL SOLID WASTE ON SOIL ENZYME ACTIVITY AND SPINACH GROWTH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 126-131. doi: 10.13205/j.hjgc.202203019
    [9]SHI Zifu, ZHANG Xingqun, ZHOU Yonggang, HUANG Qunxing. OPTIMIZATION OF INCINERATORS FOR HIGH CALORIFIC VALUE DOMESTIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 109-115. doi: DOI:10.13205/j.hjgc.202207016
    [10]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [11]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [12]CHEN Yu-di, WANG Jie, CHEN Wei-tian, MA Xie-yao, HU Xiao-dong. SPATIAL AND TEMPORAL CHANGES OF AEROSOL IN YANGTZE RIVER DELTA AND ITS METEOROLOGICAL INTERPRETATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 120-127. doi: 10.13205/j.hjgc.202112018
    [13]XIANG Hong-lin, LIU Li, LIANG Guo-bin, ZHANG Huan-wei, LI Cong-ming, ZHOU Chang, HAN Si-yu, JIANG Jian-guo. PREPARATION OF RDF BY HYDROLYSIS RESIDUES FROM ORGANIC WASTE AND PROPERTIES OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 189-194,147. doi: 10.13205/j.hjgc.202103027
    [14]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [15]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [16]SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017
    [17]SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011
    [18]CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022
    [20]Ding Jing, Lei Yang. RESEARCH ON SEMI-AEROBIC BIOREACTOR LANDFILL SYSTEM: LEACHATE CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 6-10. doi: 10.13205/j.hjgc.201503002
  • Cited by

    Periodical cited type(6)

    1. 孙广东,马俊怡,郝书,董贺,赵心茹,柴强龙,党岩. 畜禽粪污厌氧消化产甲烷效能的关键影响因素研究进展. 环境工程. 2025(03): 114-129 . 本站查看
    2. 王云琦,杜玉莹,梅红,汪炎. 厌氧消化酸累积条件下强化产甲烷研究与应用. 工业用水与废水. 2024(01): 1-5+26 .
    3. 马芷萱,南亚萍,余涛,廖驰,杨丹,于莉芳,郑兰香. 颗粒活性炭强化葡萄酒生产废水与剩余污泥厌氧共消化的影响. 环境工程学报. 2024(08): 2210-2218 .
    4. 王宁,李美,李媛,赵智强. 乙醇发酵预处理耦合生物炭强化城镇有机固废厌氧产甲烷. 能源环境保护. 2024(05): 166-174 .
    5. 姜琪,张波,苏艳,王高骏,王璟,杨阳,李倩,陈荣. 餐厨垃圾生物炭强化餐厨废水甲烷发酵效能与作用机制. 环境工程技术学报. 2024(06): 1867-1876 .
    6. 刘婉玉. 生物炭固体酸强化污泥厌氧消化的研究进展. 广东化工. 2023(23): 75-77 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.8 %FULLTEXT: 10.8 %META: 87.7 %META: 87.7 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.5 %其他: 0.5 %上海: 5.9 %上海: 5.9 %上饶: 0.1 %上饶: 0.1 %东莞: 2.4 %东莞: 2.4 %临汾: 0.4 %临汾: 0.4 %保定: 1.4 %保定: 1.4 %六安: 0.1 %六安: 0.1 %北京: 13.3 %北京: 13.3 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 2.8 %南京: 2.8 %南宁: 0.4 %南宁: 0.4 %南昌: 0.4 %南昌: 0.4 %厦门: 1.3 %厦门: 1.3 %台州: 0.5 %台州: 0.5 %合肥: 0.9 %合肥: 0.9 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 1.7 %哈尔滨: 1.7 %嘉兴: 0.1 %嘉兴: 0.1 %大理: 0.1 %大理: 0.1 %天水围: 0.3 %天水围: 0.3 %天津: 1.8 %天津: 1.8 %太原: 0.1 %太原: 0.1 %威海: 0.3 %威海: 0.3 %宁波: 0.4 %宁波: 0.4 %宜春: 0.8 %宜春: 0.8 %常州: 0.9 %常州: 0.9 %常德: 0.3 %常德: 0.3 %平顶山: 0.5 %平顶山: 0.5 %广州: 2.0 %广州: 2.0 %张家口: 1.2 %张家口: 1.2 %徐州: 0.4 %徐州: 0.4 %成都: 2.5 %成都: 2.5 %承德: 0.1 %承德: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 1.8 %昆明: 1.8 %晋城: 0.3 %晋城: 0.3 %景德镇: 0.1 %景德镇: 0.1 %朝阳: 0.4 %朝阳: 0.4 %杭州: 2.8 %杭州: 2.8 %柳州: 0.4 %柳州: 0.4 %桂林: 0.1 %桂林: 0.1 %武汉: 3.1 %武汉: 3.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 1.4 %洛阳: 1.4 %济南: 0.7 %济南: 0.7 %济源: 0.3 %济源: 0.3 %海口: 0.1 %海口: 0.1 %淮南: 0.3 %淮南: 0.3 %深圳: 0.7 %深圳: 0.7 %温州: 0.4 %温州: 0.4 %湖州: 0.5 %湖州: 0.5 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.1 %濮阳: 0.1 %珀斯: 0.4 %珀斯: 0.4 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.5 %福州: 0.5 %纽约: 0.3 %纽约: 0.3 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.1 %苏州: 0.1 %萍乡: 0.1 %萍乡: 0.1 %衢州: 1.4 %衢州: 1.4 %西宁: 3.8 %西宁: 3.8 %西安: 1.2 %西安: 1.2 %运城: 1.2 %运城: 1.2 %遂宁: 0.3 %遂宁: 0.3 %遵义: 0.1 %遵义: 0.1 %郑州: 1.4 %郑州: 1.4 %重庆: 1.7 %重庆: 1.7 %铜陵: 0.1 %铜陵: 0.1 %银川: 0.5 %银川: 0.5 %长春: 0.1 %长春: 0.1 %长沙: 0.7 %长沙: 0.7 %长治: 0.1 %长治: 0.1 %青岛: 0.8 %青岛: 0.8 %首尔特别: 0.3 %首尔特别: 0.3 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他上海上饶东莞临汾保定六安北京北海十堰南京南宁南昌厦门台州合肥吉林呼和浩特哈尔滨嘉兴大理天水围天津太原威海宁波宜春常州常德平顶山广州张家口徐州成都承德新乡昆明晋城景德镇朝阳杭州柳州桂林武汉沈阳沧州泰安洛阳济南济源海口淮南深圳温州湖州漯河濮阳珀斯盐城石家庄福州纽约绍兴芒廷维尤芝加哥苏州萍乡衢州西宁西安运城遂宁遵义郑州重庆铜陵银川长春长沙长治青岛首尔特别香港香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(6) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return