Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Wei-hao, WANG Hua, ZENG Yi-chuan, FANG Shao-wen, WANG Shi-gang, LI Yuan-yuan, ZHANG Xin-yue. SPATIOTEMPORAL VARIATION OF DRIVING FACTORS OF ALGAL PROLIFERATION IN A LARGE RIVER-CONNECTED LAKE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 64-71,128. doi: 10.13205/j.hjgc.202110009
Citation: REN Lifang, GONG Youkui, SUN Hongwei. CHARACTERISTICS OF DENITRIFYING PHOSPHORUS REMOVAL AND N2O EMISSION OF AN AOA-SBR UNDER DIFFERENT CARBON TO NITROGEN RATIOS (C/N)[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 1-9. doi: 10.13205/j.hjgc.202405001

CHARACTERISTICS OF DENITRIFYING PHOSPHORUS REMOVAL AND N2O EMISSION OF AN AOA-SBR UNDER DIFFERENT CARBON TO NITROGEN RATIOS (C/N)

doi: 10.13205/j.hjgc.202405001
  • Received Date: 2023-11-12
    Available Online: 2024-07-11
  • In the paper, the simultaneous nitrogen and phosphorus removal process (SNDPR) of domestic sewage was accomplished in the anaerobic/aerobic/anaerobic SBR (AAO-SBR) by gradually reducing the external carbon source addition, to reduce the carbon nitrogen ratio (C/N) of influent water, reducing the aerobic aeration rate, and increasing the residence time of aerobic and anoxic stages. The competition between PAOs and GAOs in AOA-SBR under different reaction conditions was investigated by the stoichiometric method, and the nitrogen and phosphorus removal performance, as well as the N2O emission ratio of the system were determined. The results showed that reducing the aerobic aeration rate and increasing the aerobic residence time were conducive to the proliferation of PAOs in AOA-SBR under the condition of low carbon to nitrogen ratio, which promoted denitrification and phosphorus removal. When the C/N ratio decreased from 7.0 to 3.3, the average TN removal rate reached more than 80%, and the average TP removal rate increased from 65.2% to 81.2%. Under different C/N conditions, the changes of microbial endogenous substances in AOA-SBR at anaerobic, anoxic and aerobic stages showed the coexistence characteristics of PAOs-GAO. AOA-SBR tended to enrich the characteristics of GAOs endogenous substances at a higher C/N. Higher C/N condition promoted the endogenous denitrification process of DGAOs and increased the release of N2O, and lower C/N promoted the proliferation of DPAOs. The coupled endogenous denitrification process of DGAOs-DGAOS promoted the reduction of N2O, which reduced the emission of N2O. As the C/N decreased from 7.0 to 3.3, the N2O release decreased from 2.23 to 1.05 mg/L, and the emission ratio decreased from 7.21% to 3.94%. The collaboration between DGAOs endogenous denitrification and DPAOs endogenous denitrification phosphorus removal processes can make full use of carbon sources in raw domestic sewage, which may break the bottleneck of nitrogen removal in urban domestic sewage.
  • [1]
    HUANG X, ZHU J, DUAN W Y, et al. Biological nitrogen removal and metabolic characteristics in a full-scale two-staged anoxic-oxic(A/O) system to treat optoelectronic wastewater[J]. Bioresource Technology, 2020, 300: 122595.
    [2]
    李易寰,奚蕾蕾,钟奕杰,等. 倒置A2/O工艺运行效果及优化控制方案[J]. 环境工程,2020,38(3):76-81.
    [3]
    赵伟华,王梅香,李健伟,等. A2O工艺和A2O+BCO工艺的脱氮除磷性能比较[J]. 中国环境科学,2019,39(3):994-999.
    [4]
    陈诗,彭来,徐一峰,等. 废水生物脱氮过程中N2O排放数学模型研究进展[J]. 环境工程,2022,40(6):97-106

    ,122.
    [5]
    康华,李红艳,龙北生,等.改进型A2NSBR工艺参数及其除磷脱氮特性[J].环境工程,2023,41(4):123-130.
    [6]
    LUO Y H, YI K, ZHANG X Y, et al. Simultaneous partial nitrification, denitrification, and phosphorus removal in sequencing batch reactors via controlled reduced aeration and short-term sludge retention time decrease[J]. Journal of Environmental Management,2023,344:118598.
    [7]
    LI D Y, GUO W, LIANG D B, et al. Rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification and phosphorus removal aerobic granular sequence batch reactor for treating low C/N domestic wastewater[J]. Environmental Research, 2022,212:113464.
    [8]
    RUBIO-RINCON F J, LOPEZ-VAZQUES C M, WELLES L, et al. Cooperation between Candidatus competibacter and Candidatus accumulibacter clade Ⅰ, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164.
    [9]
    FAN Z W, ZENG W, WANG B G, et al. Microbial community at transcription level in the synergy of GAOs and Candidatus accumulibacter for saving carbon source in wastewater treatment[J]. Bioresource Technology, 2020, 297: 122454.
    [10]
    WANG X X, WANG S Y, ZHAO J, et al. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment[J]. Bioresource Technology, 2016, 220: 17-25.
    [11]
    WANG X X, WANG S Y, XUE T L,et al.Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015,77:191-200.
    [12]
    SUN Z Y, LV Y K, LIU Y X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1[J]. Bioresource Technology, 2016,220:142-150.
    [13]
    ZHANG J H, ZHANG Q, LI X Y, et al. Rapid start-up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low-strength domestic sewage[J]. Bioresource Technology, 2017,243:660-666.
    [14]
    HU T T, PENG Y Z, YUAN C S, et al. Enhanced nutrient removal and facilitating granulation via intermittent aeration in simultaneous partial nitrification endogenous denitrification and phosphorus removal (SPNEDpr) process[J]. Chemosphere, 2021,285:131443.
    [15]
    RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113.
    [16]
    APHA(American Public Health Association). Standard Methods for the Examination of Water and Wastewater[M]. Baltimore: Port City Press, 1998.
    [17]
    OEHMEN A, KELLER B, ZENG R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 107(1/2): 131-136.
    [18]
    OEHMEN A, ZENG R J, YUAN Z, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering, 2005, 91(1): 43-53.
    [19]
    YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method[J]. Environmental Science & Technology, 2009,43(24): 9400-9406.
    [20]
    CARVALHEIRA M, OEHEMEN A, CARVALHO G, et al. Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading[J]. Bioresource Technology, 2014,172: 290-296.
    [21]
    DAN Q P, PENG Y Z, WANG B, et al. Side-stream phosphorus famine selectively strengthens glycogen accumulating organisms (GAOs) for advanced nutrient removal in an anaerobic-aerobic-anoxic system[J]. Chemical Engineering Journal, 2021,420:129554.
    [22]
    SMOLDERS G J F, VANDERMEIJ J, van LOOSDRECHT M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994,43(6): 461-470.
    [23]
    ZENG R J, SAUNDERS A M, YUAN Z, et al. Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms[J]. Biotechnology and Bioengineering, 2003,83(2): 140-148.
    [24]
    ZENG R J,VAN LOOSDRECHT M C M, YUAN Z, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering, 2003,81(1):92-105.
    [25]
    IZADI P, IZADI P, ELDYASTI A. Understanding microbial shift of enhanced biological phosphorus removal process (EBPR) under different dissolved oxygen (DO) concentrations and hydraulic retention time (HRTs)[J]. Biochemical Engineering Journal,2021,166:107833.
    [26]
    LIU W T, NAKAMURA K, MATSUO T, et al. Internal energy-based competition between polyphosphate- and glycogen- accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio[J]. Water Research, 2015,31(6): 1430-1438.
    [27]
    ZHAO J, WANG X X, LI X Y, et al. Combining partial nitrification and post endogenous denitrification in an EBPR system for deep-level nutrient removal from low carbon/nitrogen (C/N) domestic wastewater[J]. Chemosphere,2018,210: 19-28.
    [28]
    MAJED N, GU A Z. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems[J]. Science of the Total Environment, 2020, 743(7): 140603.
    [29]
    SGUANCI S, LUBELLO C, CAFFAZ S, et al. Long-term stability of aerobic granular sludge for the treatment of very low-strength real domestic wastewater[J]. Journal of Cleaner Production, 2019,222: 882-890.
    [30]
    WEISSBRODT D G, SCHNEITER G S, FUERBRINGCR J M, et al. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors[J]. Water Research, 2013,47(19): 7006-7018.
    [31]
    OEHMEN A, SAUNDERS A M, VIVES M T, et al. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources[J]. Journal of Biotechnology, 2006,123(1): 22-32.
    [32]
    YUAN C S, WANG B, PENG Y Z, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257: 127097.
    [33]
    ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science and Technology, 2008, 42(22):8260-8265.
  • Relative Articles

    [1]DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017
    [2]HU Xiaomin, JIANG Shuqi. TREATMENT OF EMULSIFIED OIL WASTEWATER BY PULSE ELECTRIC FIELD DEMULSIFICATION-ACTIVATED PERSULFATE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 55-62. doi: 10.13205/j.hjgc.202401008
    [3]SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005
    [4]REN Yuqing, WU Wei, WEI Haijuan, ZHOU Bin, XING Yunxin, HE Kankan, ZHOU Zhen. EFFECTS OF PROPERTIES AND STRUCTURE OF POLYACRYLAMIDE ON SLUDGES CONDITIONING AND DEWATERING PERFORMANCE BEFORE AND AFTER ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 57-64. doi: 10.13205/j.hjgc.202308008
    [5]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [6]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [7]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [8]WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
    [9]ZOU Zhikun, CHEN Yudao, ZHENG Gao, LU Renqian, YANG Pengfei, WU Weizhong. EFFECTS OF ETHANOL ON REMOVAL OF BTEX FROM GASOLINE BY PERSULFATE IN LIMESTONE AQUEOUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 98-104. doi: 10.13205/j.hjgc.202212013
    [10]XIE Min, WU Xin, WANG Xiao, XU Su, XIAO Ben-yi, GUO Xue-song. OPTIMIZATION ON EXCESS SLUDGE DEWATERING OF RURAL DISPERSED WASTEWATER TREATMENT FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 15-20. doi: 10.13205/j.hjgc.202106003
    [11]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [12]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [13]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [14]LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016
    [15]LAN Bing-bing, JIN Ruo-fei, LIU Yan-song, LIU Guang-fei, ZHOU Ji-ti. EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 122-126. doi: 10.13205/j.hjgc.202007019
    [16]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [17]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
    [18]CHEN Wei-gang, WU Hai-xia, FAN Jia-wei. ACTIVATED CARBON HETEROGENEOUS ACTIVATION OF DIFFERENT PERSULFATES TO DEGRADATION AZO DYE ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 113-118,57. doi: 10.13205/j.hjgc.202008019
    [19]GUO Zhao-qiang, SHANG Shuang, LAN Kui, LI Ze-shan, XIONG Tao, ZHANG Juan-juan, WANG Yan, QIN Zhen-hua, LI Jian-fen. HYDROGEN-RICH SYNGAS PRODUCTION BY CO-PYROLYSIS OF WHEAT STALK AND WET SEWAGE SLUDGE WITH DIFFERENT MOISTURE CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 160-164,214. doi: 10.13205/j.hjgc.202005028
    [20]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
  • Cited by

    Periodical cited type(6)

    1. 黎栩霞,王裕东,肖佑鹏,徐旭,王海鹏,陈伊梦,林俊川,黄桂松,黄振国,孙萍,麦有全,杨尚波,许旺. 深圳近岸海域水质遥感监测及时空变化. 环境工程. 2024(01): 243-252 . 本站查看
    2. 胡芳,刘聚涛,杨平,温春云,张兰婷,张洁. 鄱阳湖蓝藻时空分布特征及其驱动因子研究. 长江流域资源与环境. 2024(03): 605-614 .
    3. 钱春龙,曾一川,袁伟皓,吴怡. 基于时间序列的鄱阳湖Chl-a预测模型优化构建. 长江科学院院报. 2023(10): 14-21 .
    4. 任永琴,金柱成,俞真元,王晓丽,彭士涛. 基于双向门控循环单元的地表水氨氮预测. 中国环境科学. 2022(02): 672-679 .
    5. 朱江伟,马鹏飞,杜晓,杨言言,郝晓刚,罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离. 化工学报. 2022(07): 3057-3067 .
    6. 张天衍,董增川,罗赟,石晴宜,韩亚雷,崔璨,周强,张游. 基于水质-水位二元响应关系推求过水型湖泊适宜生态水位研究. 湖泊科学. 2022(05): 1670-1682 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.5 %FULLTEXT: 8.5 %META: 85.5 %META: 85.5 %PDF: 6.0 %PDF: 6.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.3 %其他: 0.3 %上海: 1.6 %上海: 1.6 %上饶: 0.5 %上饶: 0.5 %东京: 0.3 %东京: 0.3 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %保定: 0.3 %保定: 0.3 %兰州: 1.1 %兰州: 1.1 %北京: 13.2 %北京: 13.2 %南京: 3.5 %南京: 3.5 %南宁: 0.3 %南宁: 0.3 %南昌: 1.1 %南昌: 1.1 %台州: 1.1 %台州: 1.1 %吉林: 0.5 %吉林: 0.5 %呼和浩特: 0.3 %呼和浩特: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 2.2 %嘉兴: 2.2 %大同: 0.5 %大同: 0.5 %天津: 2.7 %天津: 2.7 %安康: 0.5 %安康: 0.5 %常州: 0.3 %常州: 0.3 %常德: 0.5 %常德: 0.5 %广州: 1.9 %广州: 1.9 %庆阳: 1.6 %庆阳: 1.6 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 1.9 %张家口: 1.9 %德阳: 0.3 %德阳: 0.3 %成都: 2.7 %成都: 2.7 %扬州: 0.8 %扬州: 0.8 %新乡: 0.5 %新乡: 0.5 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 4.9 %武汉: 4.9 %江门: 0.3 %江门: 0.3 %洛阳: 0.3 %洛阳: 0.3 %海口: 0.3 %海口: 0.3 %深圳: 0.8 %深圳: 0.8 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.4 %漯河: 1.4 %烟台: 0.3 %烟台: 0.3 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.5 %福州: 0.5 %芒廷维尤: 7.3 %芒廷维尤: 7.3 %芝加哥: 1.4 %芝加哥: 1.4 %菏泽: 0.8 %菏泽: 0.8 %蚌埠: 2.2 %蚌埠: 2.2 %衡水: 1.6 %衡水: 1.6 %衢州: 0.5 %衢州: 0.5 %西宁: 6.8 %西宁: 6.8 %西安: 0.3 %西安: 0.3 %贵港: 0.8 %贵港: 0.8 %贵阳: 1.1 %贵阳: 1.1 %资阳: 0.5 %资阳: 0.5 %运城: 1.9 %运城: 1.9 %通辽: 1.4 %通辽: 1.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %龙岩: 1.6 %龙岩: 1.6 %其他其他上海上饶东京东莞临汾保定兰州北京南京南宁南昌台州吉林呼和浩特唐山嘉兴大同天津安康常州常德广州庆阳弗吉尼亚州张家口德阳成都扬州新乡无锡昆明晋城杭州武汉江门洛阳海口深圳温州湖州漯河烟台盐城石家庄福州芒廷维尤芝加哥菏泽蚌埠衡水衢州西宁西安贵港贵阳资阳运城通辽遵义邯郸郑州重庆长沙龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(18) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return