Citation: | YAO Haiqian, GUO Xinchao, FU Fengman, YANG Hao, GUO Xiang, ZHANG Fanghong. Mn-Fe-Ce/GAC CATALYZED OZONE OXIDATION TECHNOLOGY FOR ANILINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 28-34. doi: 10.13205/j.hjgc.202405004 |
[1] |
杨振兴, 郭绍辉. 苯胺废水处理技术综述[J]. 油气田环境保护, 2022, 32(4):1-6.
|
[2] |
ZHANG C J, CHEN H, XUE G, et al. A critical review of the aniline transformation fate in azo dye wastewater treatment[J]. Journal of cleaner production, 2021,321:128971.
|
[3] |
周珉, 罗西子. 模拟苯胺废水的臭氧氧化过程初探[J]. 能源环境保护, 2021, 35(2):24-29.
|
[4] |
ISSAKA E, AMU-DARKO J N O, YAKUBU S, et al. Advanced catalytic ozonation for degradation of pharmaceutical pollutants: a review[J]. chemosphere, 2022, 289:133208.
|
[5] |
NASSEH N, ARGHAVAN F S, RODRIGUEZ-COUTO S, et al. Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation[J]. Advanced Powder Technology, 2019, 31(2):875-885.
|
[6] |
JIANG H B, ZHANG R, HAO J L, et al. Design, preparation, characterization, and application of MnxCu1-xOy/γ-Al2O3 catalysts in ozonation to achieve simultaneous organic carbon and nitrogen removal in pyridine wastewater[J]. Science of the Total Environment, 2021, 774(45):145189.
|
[7] |
SHAHHIRAN A F, RAMLI R M, ZAWAWI A, et al. Modification of TiO2/AC catalyst for visible light degradation of ionic liquid contaminated wastewater: effect of Cu loading on the characterization and efficiency[J]. Materials Today: Proceedings, 2021, 42:124-130.
|
[8] |
占小翠, 旷文君, 丁丁, 等. 超声波改性强化Mn/AC催化臭氧化降解苯酚效能分析[J]. 现代化工, 2019, 39(2):103-107.
|
[9] |
ZHANG J W, GUO Q, WU W L, et al. Preparation of Fe-MnOx/AC by high gravity method for heterogeneous catalytic ozonation of phenolic wastewater[J]. Chemical Engineering Science, 2022, 255:117667.
|
[10] |
吴鑫明, 安浩, 赵俊宇, 等. Fe/Mn-PAC催化剂的制备及其催化臭氧氧化降解活性艳蓝KN-R[J]. 环境工程, 2023, 41(4):32-29.
|
[11] |
JOTHINATHAN L, CAI Q Q, ONG S L, et al. Fe-Mn doped powdered activated carbon pellet as ozone catalyst for cost-effective phenolic wastewater treatment: mechanism studies and phenol by-products elimination[J]. Journal of hazardous materials, 2022, 424:127483.
|
[12] |
何帅明, 莫立焕, 徐峻, 等. 活性炭负载铈催化臭氧处理桉木制浆废水[J]. 中国造纸, 2016, 35(3):1-6.
|
[13] |
秦航道, 董清芝, 陈洪林, 等. Ce/AC催化臭氧化降解垃圾渗滤液中提取的富里酸[J]. 四川环境, 2015, 34(3):13-17.
|
[14] |
国家环境保护总局. 水和废水分析监测方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[15] |
TRAN Q K, LY H V, KWON B, et al. Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts[J]. Renewable Energy, 2021, 173:886-895.
|
[16] |
甘玲, 刘琪琪, 李建军, 等. Fe掺杂Mn-Ce/AC催化剂的制备及其低温脱硝[J]. 环境工程学报, 2017, 11(1):445-449.
|
[17] |
LIU B T, KE Y X. Enhanced selective catalytic oxidation of H2S over Ce-Fe/AC catalysts at ambient temperature[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110:28-33.
|
[18] |
胡云琪. Fe-Mn/AC催化臭氧/过硫酸盐处理垃圾渗滤液生化出水实验研究[D]. 南昌: 华东交通大学, 2018.
|
[19] |
刘东坡, 陈伟锐, 王静, 等. 铁锌共掺杂MCM-41构建双酸性中心及其催化臭氧化布洛芬[J]. 环境工程学报, 2022, 16(9):2850-2861.
|
[20] |
郭彤彤. 活性炭负载MgO掺杂MoO3催化臭氧化水中的磺胺间甲氧嘧啶钠[D]. 郑州: 郑州大学, 2019.
|
[21] |
ZHAO P, ZHAO Y, GUO R, et al. Preparation of CuO/γ-Al2O3 catalyst for degradation of azo dyes (reactive brilliant red X-3B): an optimization study[J]. Journal of cleaner production, 2021, 328:129624.
|
[22] |
李家耀, 宋卫锋, 李秋华, 等. Mn-Fe-Ce/γ-Al2O3催化剂的制备及其在奶牛养殖废水处理中的臭氧催化氧化性能[J]. 环境工程学报, 2020, 14(4):875-883.
|
[23] |
FAGGHIHINEZHAD M, BAFHDADI M, SHAHIN M S, et al. Catalytic ozonation of real textile wastewater by magnetic oxidized g-C3N4 modified with Al2O3 nanoparticles as a novel catalyst[J]. Separation and Purification Technology, 2022, 283:120208.
|
[24] |
仇一帆, 杨佐毅, 宋卫锋, 等. Fe3O4-CeOx/AC催化剂的制备及其催化臭氧氧化降解盐酸四环素[J]. 环境科学学报, 2022, 42(8):146-155.
|
[25] |
LUO Z F, WANG D H, ZENG W S, et al. Removal of refractory organics from piggery bio-treatment effluent by the catalytic ozonation process with piggery biogas residue biochar as the catalyst[J]. Science of the Total Environment, 2020, 734:139448.
|
[26] |
LIU J, LI J, HE S, et al. Heterogeneous catalytic ozonation of oxalic acid with an effective catalyst based on copper oxide modified g-C3N4[J]. Separation and Purification Technology, 2020, 234:116120.
|