Citation: | DAI Ruijia, XIAO Xinxin, ZHAO Yongqi, WEI Aoran, CHEN Xingxing, YU Jianglong, DOU Jinxiao. INFLUENCE OF FLUE GAS COMPONENTS ON NO ABSORPTION BY METHYLUREA-BASED DEEP EUTECTIC SOLVENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 62-69. doi: 10.13205/j.hjgc.202405008 |
[1] |
段晓谞, 窦金孝, 魏傲然, 等. 粉煤灰负载锰基催化剂低温脱硝活性及水硫抗性的实验研究[J]. 中国电机工程学报, 2022, 42(11): 4102-4112.
|
[2] |
梁宝瑞, 王斌, 马志亮, 等. 负载Mn型类水滑石结构催化剂同时催化净化NOx和o-DCB研究[J]. 环境工程, 2022, 40(2): 8-13.
|
[3] |
滕玉婷, 张亚平, 王玲, 等. 干湿法结合工艺回收废弃SCR脱硝催化剂中的钛、钒和钨[J]. 环境工程, 2020, 38(11): 163-167.
|
[4] |
窦金孝, 赵永奇, 段晓谞, 等. 络合亚铁乙二醇-四丁基溴化铵低共熔溶剂协同吸收SO2和NO[J]. 化工进展, 2020,39(2): 453-460.
|
[5] |
CHEN Y, HAN X X, LIU Z H, et al. Capture of toxic gases by deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5410-5430.
|
[6] |
裴鉴禄, 王坤俊, 陈欣, 等. 氨基离子液体负载活性炭CO2吸附性能的负协同效应[J]. 环境工程, 2022, 40(11): 78-83.
|
[7] |
CATARINA F, FILIPA L, BERNARDO D R, et al. Deep eutectic solvents: overcoming 21st century challenges[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 18: 31-36.
|
[8] |
CHEN Y, MU T. Application of deep eutectic solvents in biomass pretreatment and conversion[J]. Green Energy & Environment, 2019, 4: 95-115.
|
[9] |
CHEN W J, JIANG J Y, LAN X, et al. A strategy for the dissolution and separation of rare earth oxides by novel BrØnsted acidic deep eutectic solvents[J]. Green Chemistry, 2019, 21: 4748-4756.
|
[10] |
MOU H Y, WANG J F, ZHANG D L, et al. A one-step deep eutectic solvent assisted synthesis of carbon nitride/metal oxide composites for photocatalytic nitrogen fixation[J]. Journal of Materials Chemistry A, 2019, 7(10): 5719-5725.
|
[11] |
DOU J X, ZHAO Y Q, YIN F K, et al. Mechanistic study of selective absorption of NO in flue gas using EG-TBAB deep eutectic solvents[J]. Environmental Science & Technology, 2019, 53(2): 1031-1038.
|
[12] |
ZHAO Y Q, DOU J Q, WEI A R, et al. Highly efficient and reversible low-concentration SO2 absorption in flue gas using novel phosphonium-based deep eutectic solvents with different substituents[J]. Journal of Molecular Liquids, 2021, 340: 117228.
|
[13] |
WAITE S L, LI H, PAGE A J, et al. NO2 solvation structure in choline chloride deep eutectic solvents-the role of the hydrogen bond donor[J]. The Journal of Physical Chemistry B, 2018, 122(15): 4336-4344.
|
[14] |
HOU Y C, YAO C F, WU W Z. Deep eutectic solvents: green solvents for separation applications[J]. Journal of the Air & Waste Management Association, 2018, 61(12): 873-885.
|
[15] |
SUN Y L, WEI G S, TANTAI X W, et al. Highly efficient nitric oxide absorption by environmentally friendly deep eutectic solvents based on 1,3-dimethylthiourea[J]. Energy & Fuels, 2017, 31(11): 12439-12445.
|
[16] |
ZHANG L H, MA H P, WEI G S, et al. Efficient and reversible nitric oxide absorption by low-viscosity, azole-derived deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2019, 64(7): 3068-3077.
|
[17] |
YU D K, MOU H Y, ZHAO X H, et al. Eutectic Molecular Liquids Based on Hydrogen Bonding and π-π Interaction for Exfoliating Two-dimensional Materials and Recycling Polymers[J]. Chemistry-An Asian Journal, 2019, 14(19): 3350-3356.
|
[18] |
CUI G K, LI Y N, LIU J X, et al.Tuning Environmentally Friendly Chelate-Based Ionic Liquids for Highly Efficient and Reversible SO2 Chemisorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15292-15300.
|
[19] |
张盈盈, 陆小华, 冯新, 等. 胆碱类低共熔溶剂的物性及应用[J]. 化学进展, 2013, 25(6): 881-892.
|
[20] |
SUN Y, GAO M J, REN S H, et al. Highly efficient absorption of NO by amine-based functional deep eutectic solvents[J]. Energy & Fuels, 2020, 34(1): 690-697.
|
[21] |
MERT A, SANTIAGO A. A nanoscopic explanation of nitric oxide solubility in natural deep eutectic solvents[J]. Journal of Molecular Liquids, 2021, 324: 114673.
|
[22] |
张吕鸿, 马号朋, 澹台晓伟, 等. 苯甲酸型低共熔溶剂吸收一氧化氮的性能研究[J].化工学报, 2020, 71(8): 3644-3651.
|
[23] |
CHEN C C, WANG C Y, HUANG Y H. Reversible absorption of nitrogen dioxide by choline chloride-based deep eutectic solvents and their aqueous mixtures[J]. Chemical Engineering Journal, 2021, 405: 126760.
|
[24] |
ZHOU T T, ZHAO Y Q, XIAO X X, et al. Effective absorption mechanism of SO2 and NO2 in the flue gas by ammonium-bromide-based deep eutectic solvents[J]. ACS Omega, 2022, 7(33): 29171-29180.
|
[25] |
MOURA L, KOLLAU L, GOMES M C. Solubility of gases in deep eutectic solvents[J]. Environmental Chemistry for a Sustainable World, 2020, 56: 131-155.
|
[26] |
WAZEER I, HADJ-KALI M K, AL-NASHEF I M. Utilization of deep eutectic solvents to reduce the release of hazardous gases to the atmosphere: a critical review[J]. Molecules, 2021, 26: 75.
|
[27] |
ZHENG W T, XIA G B, YU G W, et al. Efficient absorption and thermodynamic modeling of nitric oxide by low viscous DBU-based N-heterocyclic deep eutectic solvents[J]. Journal of Molecular Liquids, 2022, 360: 119469.
|
[28] |
CAO N N, GAN L, XIAO Q X, et al. Highly efficient and reversible nitric oxide capture by functionalized ionic liquids through multiple-site absorption[J]. Journal of Chemical & Engineering Data, 2020, 8: 2990-2995.
|
[29] |
JIANG B, LIN W R, ZHANG L H, et al. 1, 3-Dimethylurea tetrabutylphosphonium bromide ionic liquids for NO efficient and reversible capture[J]. Energy & Fuels, 2016, 30(1): 735-739.
|
[30] |
徐环斐, 彭建军, 宋晓明, 等. 低共熔溶剂的分子模拟研究进展[J].齐鲁工业大学学报, 2019, 33(5): 1-9.
|
[31] |
ALI M C, YANG Q W, ANDREW A, et al. Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents[J]. Green Chemistry, 2016, 18(1): 157-164.
|
[32] |
FILIPA L, MAXIME D, ARMANDO J D, et al. Concurrent desulfurization and denitrogenation of fuels using deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11341-11349.
|
[1] | JIANG Zixuan, ZHANG Lanxin, LI Tianyuan, ZHU Enbin, ZHU Fuhe, WEN Zongguo, ZHANG Liping. Analysis of carbon footprint and deep decarbonization potential of recycled polyester filament from waste PET bottles[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 12-20. doi: 10.13205/j.hjgc.202501002 |
[2] | WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016 |
[3] | YE Ning, LU Hao, SHI Chen, LÜ Yizheng, QIAN Yisen, TIAN Jinping, ZHANG Suyi, HU Yongqi, LEI Xiangyun, CHEN Lüjun. UNCOVERING LIFE CYCLE ENVIRONMENTAL IMPACTS OF NEW PROCESSES ON RESOURCES AND ENERGY RECOVERY OF BAIJIU DISTILLER’S GRAINS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 135-143. doi: 10.13205/j.hjgc.202401018 |
[4] | LI Si, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. CARBON NEUTRAL POTENTIAL OF WHOLE PROCESS OF CO-DIGESTION OF FOOD WASTE AND SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 90-98. doi: 10.13205/j.hjgc.202411010 |
[5] | SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005 |
[6] | WANG Tao, YUE Bo, MENG Bangbang, LIU Bo, GAO Hong. A LIFE CYCLE ASSESSMENT OF SECONDARY COPPER PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 225-232. doi: 10.13205/j.hjgc.202407025 |
[7] | LIU Jun, PAN Tianqi, ZHAO Huihui, GUO Yan, CHEN Guanyi, HOU Li'an. A MODEL OF CARBON EMISSION REDUCTION CALCULATION FOR AEROBIC REMEDIATION PROCESS IN MSW LANDFILLS BASED ON PRINCIPAL COMPONENT ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 133-139. doi: 10.13205/j.hjgc.202309016 |
[8] | WU Cuihua, YU Xiaohua, GAO Junzheng, YAN Haochun, LU Yintao, YAO Hong. CARBON EMISSION ACCOUNTING AND REDUCTION ANALYSIS OF WASTE COLLABORATIVE DISPOSAL IN TYPICAL CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 30-36,60. doi: 10.13205/j.hjgc.202307005 |
[9] | FU Bin, XU Ping. EXAMPLE ANALYSIS OF CARBON EMISSION STRUCTURE OF RESIDENTIAL WATER SYSTEMS AND THEIR REDUCTION POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 178-184,194. doi: 10.13205/j.hjgc.202304025 |
[10] | LIAO Chengfeng, LIU Yuchen, TANG Yuting, TANG Jiehong, MA Xiaoqian. LIFE CYCLE ASSESSMENT AND TECHNO-ECONOMIC ANALYSIS OF PRODUCING AMMONIA BY ALGAL BIOMASS GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 187-194. doi: 10.13205/j.hjgc.202305025 |
[11] | LIAO Ziying, ZHANG Huanjun, HAN Shuguang, PAN Zhengguo, LI Yi. LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 143-150. doi: 10.13205/j.hjgc.202306019 |
[12] | LI Wei, CHEN Gang, CAO Taibo, YANG Fangsheng, CHEN Kunyang, WU Huanyu. CARBON EMISSION INTENSITY AND CARBON REDUCTION POTENTIAL IN RECYCLING AND DISPOSAL OF SUBWAY-RELATED SHIELD MUCK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 53-60. doi: 10.13205/j.hjgc.202307008 |
[13] | ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026 |
[14] | WANG Lin, YANG Muyan, GAO Yuqiang. CALCULATION AND ANALYSIS OF CARBON EMISSION IN CONSTRUCTION STAGE OF LOESS TUNNEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013 |
[15] | CHEN Kunyang, WANG Jiayuan, YU Bo, DUAN Huabo, WU Huanyu. ENVIRONMENTAL IMPACT EVALUATION OF RESIDUAL MUD FROM SUBWAY ENGINEERING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 191-198. doi: 10.13205/j.hjgc.202202029 |
[16] | SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027 |
[17] | XU Xiaozhu, ZHANG Yun, GAO Qiufeng, XU Yurong, WANG Zhanbo. LIFE CYCLE ASSESSMENT OF HYDRODESULFURIZATION WASTE METAL CATALYST RECOVERY PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 185-190. doi: 10.13205/j.hjgc.202208026 |
[18] | XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027 |
[19] | LIU Yu-tong, ZHANG Yun, HOU Hao-chen, GAO Qiu-feng, XU Xiao-zhu. LIFE CYCLE ASSESSMENT OF HIGH PURITY MAGNESIUM PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 187-191. doi: 10.13205/j.hjgc.202106028 |
[20] | CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027 |