Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Wei-hao, WANG Hua, ZENG Yi-chuan, FANG Shao-wen, WANG Shi-gang, LI Yuan-yuan, ZHANG Xin-yue. SPATIOTEMPORAL VARIATION OF DRIVING FACTORS OF ALGAL PROLIFERATION IN A LARGE RIVER-CONNECTED LAKE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 64-71,128. doi: 10.13205/j.hjgc.202110009
Citation: LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010

ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE

doi: 10.13205/j.hjgc.202405010
  • Received Date: 2023-08-14
    Available Online: 2024-07-11
  • In recent years, the preparation of biochar from organic waste has become a research hotspot in many fields. In this paper, biochar (MS-BC) was prepared from municipal sludge (MS) by pyrolysis, and then characterized by FT-IR, SEM, EDS, and BET. The effect of preparation and operation conditions of MS-BC on its adsorption of tetracycline was investigated. The result showed that, the MS-BC1000 prepared by high-temperature pyrolysis has developed a pore structure with a large specific surface area, and can provide abundant adsorption sites and excellent adsorption performance. The removal rate of tetracycline by MS-BC 1000 was about 98.5%, at the MS-BC dosage of 0.3 g, the adsorption time of 4 h, adsorption temperature (T) of 25 ℃, the oscillation frequency (V) of 200 r/min, the initial pH of 6, and the initial tetracycline concentration (c0) of 50 mg/L. Langmuir adsorption isotherm and Lagergren’s quasi-second-order kinetic equation can better explain the adsorption behavior of tetracycline on MS-BC, mainly due to the monolayer adsorption by polar interaction and π-π interaction. The maximum adsorption capacity was 333.3 mg/g. The findings provide a theoretical basis for the reuse of municipal sludge and the treatment of tetracycline antibiotic wastewater.
  • [1]
    姚佳璇, 俄胜哲, 袁金华, 等. 城市污泥农用对灌漠土作物产量及土壤质量的影响[J]. 生态学杂志, 2021, 40(7): 2120-2132.
    [2]
    REZAEE F, DANESH S, TAVAKKOLIZADEH M, et al. Investigating chemical, physical and mechanical properties of eco-cement produced using dry sewage sludge and traditional raw materials[J]. Journal of Cleaner Production, 2019, 214: 749-757.
    [3]
    WANG H X, XU J L, LIU Y Q, et al. Preparation of ceramsite from municipal sludge and its application in water treatment: a review[J]. Journal of Environmental Management, 2021, 287: 112374.
    [4]
    GRÜBEL K, KUGLARZ M, WACŁAWEK S, et al. Microwave-assisted sustainable co-digestion of sewage sludge and rapeseed cakes[J]. Energy Conversion and Management, 2019, 199:112012.
    [5]
    JI J Q, YUAN X Z, ZHAO Y L, et al. Mechanistic insights of removing pollutant in adsorption and advanced oxidation processes by sludge biochar[J]. Journal of Hazardous Materials, 2022, 430: 128375.
    [6]
    LI Z W, LIU X J, WANG Y. Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous solution[J]. Journal of Material Cycles and Waste Management, 2019, 22(1): 123-132.
    [7]
    黄艳琴, 甄宇航, 王晨州, 等. "双碳"背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 29-34.
    [8]
    WEI L L, ZHAO Q L, HU K, et al. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time[J]. Water Research, 2011, 45(3): 1472-1480.
    [9]
    MO G H, HU Q, WANG G H, et al. Fe3O4-modified sewage sludge biochar for U(Ⅵ) removal from aqueous solution: performance and mechanism[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(1): 225-237.
    [10]
    ZHANG J J, SHAO J A, JIN Q Z, et al. Sludge-based biochar activation to enhance Pb(Ⅱ) adsorption[J]. Fuel, 2019, 252: 101-108.
    [11]
    XI J R, ZHANG R, YE L, et al. Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption[J]. Journal of Environmental Management, 2022, 304: 114297.
    [12]
    ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment[J]. Chemosphere, 2018, 191: 64-71.
    [13]
    FAN X L, ZHANG W L, LIU Y M, et al. Hydrothermal synthesis of sewage sludge biochar for activation of persulfate for antibiotic removal: efficiency, stability and mechanism[J]. Environmental research, 2023, 218: 114937.
    [14]
    MA Y F, LU T M, YANG L, et al. Efficient adsorptive removal of fluoroquinolone antibiotics from water by alkali and bimetallic salts co-hydrothermally modified sludge biochar[J]. Environmental pollution, 2022, 298: 118833.
    [15]
    陈林, 平巍, 闫彬, 等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J].环境工程, 2020, 38(8): 119-124.
    [16]
    蒋玉柱, 惠贺龙, 刘弘毅, 等. 印染污泥基生物炭吸附处理难降解有机废水[J].环境工程, 2022, 40(10): 32-39.
    [17]
    杨育红, 寇丽栋, 范庆峰, 等.镁改性污泥基生物炭去除水中磷和抗生素[J]. 中国环境科学, 2022, 42(9): 4137-4144.
    [18]
    LIU H D, XU G R, LI G B. The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline[J]. Science of the Total Environment, 2020, 747: 141492.
    [19]
    FUNG P P M, CHEUNG W H, MCKAY G. Systematic analysis of carbon dioxide activation of waste tire by factorial design[J]. Chinese Journal of Chemical Engineering, 2012, 20(3): 497-504.
    [20]
    ZHANG H Y, WANG Z W, GAO J H, et al. Adsorption characteristics of norfloxacin by biochars derived from reed straw and municipal sludge[J]. Environmental Science, 2016, 37: 689-696.
    [21]
    LI Y L, LI Y L, LI L P, et al. Preparation and analysis of activated carbon from sewage sludge and corn stalk[J]. Advanced Powder Technology, 201627(2): 684-691.
    [22]
    LIN Z, CHEN Y T, LI G Y, et al. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms[J]. Science of the Total Environment, 2023, 881: 163410.
    [23]
    TIAN M, HE X M, FENG Y Z, et al. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures[J]. Antibiotics, 2021, 10(5): 539.
    [24]
    孙兆楠, 潘玉瑾, 冷杰雯, 等. 活性黑KN-B在石墨烯表面的吸附行为[J]. 环境工程, 2021, 39(12): 114-119.
    [25]
    周淑红, 张博文, 卫嘉华, 等. 铁改性生物炭对几种染料的吸附机理研究[J]. 环境化学, 2023, 42(11): 1-12.
  • Relative Articles

    [1]DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017
    [2]HU Xiaomin, JIANG Shuqi. TREATMENT OF EMULSIFIED OIL WASTEWATER BY PULSE ELECTRIC FIELD DEMULSIFICATION-ACTIVATED PERSULFATE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 55-62. doi: 10.13205/j.hjgc.202401008
    [3]SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005
    [4]REN Yuqing, WU Wei, WEI Haijuan, ZHOU Bin, XING Yunxin, HE Kankan, ZHOU Zhen. EFFECTS OF PROPERTIES AND STRUCTURE OF POLYACRYLAMIDE ON SLUDGES CONDITIONING AND DEWATERING PERFORMANCE BEFORE AND AFTER ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 57-64. doi: 10.13205/j.hjgc.202308008
    [5]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [6]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [7]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [8]WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
    [9]ZOU Zhikun, CHEN Yudao, ZHENG Gao, LU Renqian, YANG Pengfei, WU Weizhong. EFFECTS OF ETHANOL ON REMOVAL OF BTEX FROM GASOLINE BY PERSULFATE IN LIMESTONE AQUEOUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 98-104. doi: 10.13205/j.hjgc.202212013
    [10]XIE Min, WU Xin, WANG Xiao, XU Su, XIAO Ben-yi, GUO Xue-song. OPTIMIZATION ON EXCESS SLUDGE DEWATERING OF RURAL DISPERSED WASTEWATER TREATMENT FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 15-20. doi: 10.13205/j.hjgc.202106003
    [11]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [12]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [13]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [14]LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016
    [15]LAN Bing-bing, JIN Ruo-fei, LIU Yan-song, LIU Guang-fei, ZHOU Ji-ti. EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 122-126. doi: 10.13205/j.hjgc.202007019
    [16]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [17]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
    [18]CHEN Wei-gang, WU Hai-xia, FAN Jia-wei. ACTIVATED CARBON HETEROGENEOUS ACTIVATION OF DIFFERENT PERSULFATES TO DEGRADATION AZO DYE ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 113-118,57. doi: 10.13205/j.hjgc.202008019
    [19]GUO Zhao-qiang, SHANG Shuang, LAN Kui, LI Ze-shan, XIONG Tao, ZHANG Juan-juan, WANG Yan, QIN Zhen-hua, LI Jian-fen. HYDROGEN-RICH SYNGAS PRODUCTION BY CO-PYROLYSIS OF WHEAT STALK AND WET SEWAGE SLUDGE WITH DIFFERENT MOISTURE CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 160-164,214. doi: 10.13205/j.hjgc.202005028
    [20]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
  • Cited by

    Periodical cited type(6)

    1. 黎栩霞,王裕东,肖佑鹏,徐旭,王海鹏,陈伊梦,林俊川,黄桂松,黄振国,孙萍,麦有全,杨尚波,许旺. 深圳近岸海域水质遥感监测及时空变化. 环境工程. 2024(01): 243-252 . 本站查看
    2. 胡芳,刘聚涛,杨平,温春云,张兰婷,张洁. 鄱阳湖蓝藻时空分布特征及其驱动因子研究. 长江流域资源与环境. 2024(03): 605-614 .
    3. 钱春龙,曾一川,袁伟皓,吴怡. 基于时间序列的鄱阳湖Chl-a预测模型优化构建. 长江科学院院报. 2023(10): 14-21 .
    4. 任永琴,金柱成,俞真元,王晓丽,彭士涛. 基于双向门控循环单元的地表水氨氮预测. 中国环境科学. 2022(02): 672-679 .
    5. 朱江伟,马鹏飞,杜晓,杨言言,郝晓刚,罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离. 化工学报. 2022(07): 3057-3067 .
    6. 张天衍,董增川,罗赟,石晴宜,韩亚雷,崔璨,周强,张游. 基于水质-水位二元响应关系推求过水型湖泊适宜生态水位研究. 湖泊科学. 2022(05): 1670-1682 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.5 %FULLTEXT: 8.5 %META: 85.5 %META: 85.5 %PDF: 6.0 %PDF: 6.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.3 %其他: 0.3 %上海: 1.6 %上海: 1.6 %上饶: 0.5 %上饶: 0.5 %东京: 0.3 %东京: 0.3 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %保定: 0.3 %保定: 0.3 %兰州: 1.1 %兰州: 1.1 %北京: 13.2 %北京: 13.2 %南京: 3.5 %南京: 3.5 %南宁: 0.3 %南宁: 0.3 %南昌: 1.1 %南昌: 1.1 %台州: 1.1 %台州: 1.1 %吉林: 0.5 %吉林: 0.5 %呼和浩特: 0.3 %呼和浩特: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 2.2 %嘉兴: 2.2 %大同: 0.5 %大同: 0.5 %天津: 2.7 %天津: 2.7 %安康: 0.5 %安康: 0.5 %常州: 0.3 %常州: 0.3 %常德: 0.5 %常德: 0.5 %广州: 1.9 %广州: 1.9 %庆阳: 1.6 %庆阳: 1.6 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 1.9 %张家口: 1.9 %德阳: 0.3 %德阳: 0.3 %成都: 2.7 %成都: 2.7 %扬州: 0.8 %扬州: 0.8 %新乡: 0.5 %新乡: 0.5 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 4.9 %武汉: 4.9 %江门: 0.3 %江门: 0.3 %洛阳: 0.3 %洛阳: 0.3 %海口: 0.3 %海口: 0.3 %深圳: 0.8 %深圳: 0.8 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.4 %漯河: 1.4 %烟台: 0.3 %烟台: 0.3 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.5 %福州: 0.5 %芒廷维尤: 7.3 %芒廷维尤: 7.3 %芝加哥: 1.4 %芝加哥: 1.4 %菏泽: 0.8 %菏泽: 0.8 %蚌埠: 2.2 %蚌埠: 2.2 %衡水: 1.6 %衡水: 1.6 %衢州: 0.5 %衢州: 0.5 %西宁: 6.8 %西宁: 6.8 %西安: 0.3 %西安: 0.3 %贵港: 0.8 %贵港: 0.8 %贵阳: 1.1 %贵阳: 1.1 %资阳: 0.5 %资阳: 0.5 %运城: 1.9 %运城: 1.9 %通辽: 1.4 %通辽: 1.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %龙岩: 1.6 %龙岩: 1.6 %其他其他上海上饶东京东莞临汾保定兰州北京南京南宁南昌台州吉林呼和浩特唐山嘉兴大同天津安康常州常德广州庆阳弗吉尼亚州张家口德阳成都扬州新乡无锡昆明晋城杭州武汉江门洛阳海口深圳温州湖州漯河烟台盐城石家庄福州芒廷维尤芝加哥菏泽蚌埠衡水衢州西宁西安贵港贵阳资阳运城通辽遵义邯郸郑州重庆长沙龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (150) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return