Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QI Nan, ZHAO Yinuo, ZHAO Xin, WANG Jian, YANG Chunlu, HU Xiaomin. ENHANCEMENT OF BIO-HYDROGEN PRODUCTION EFFICIENCY AND APPLICATION POTENTIAL OF PEANUT SHELL WITH LOW-TEMPERATURE PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 83-89. doi: 10.13205/j.hjgc.202405011
Citation: QI Nan, ZHAO Yinuo, ZHAO Xin, WANG Jian, YANG Chunlu, HU Xiaomin. ENHANCEMENT OF BIO-HYDROGEN PRODUCTION EFFICIENCY AND APPLICATION POTENTIAL OF PEANUT SHELL WITH LOW-TEMPERATURE PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 83-89. doi: 10.13205/j.hjgc.202405011

ENHANCEMENT OF BIO-HYDROGEN PRODUCTION EFFICIENCY AND APPLICATION POTENTIAL OF PEANUT SHELL WITH LOW-TEMPERATURE PRETREATMENT

doi: 10.13205/j.hjgc.202405011
  • Received Date: 2023-04-24
    Available Online: 2024-07-11
  • At present, research on improving the hydrogen production efficiency of cellulose waste fermentation mostly focuses on comparing different pretreatment methods and optimizing experimental conditions. While there is little research on the experimental design and application analysis of low-temperature pretreatment technology. In this study, the pretreatment temperature and time of temperature pretreatment on peanut shell were optimized for further biohydrogen production. The pretreatment conditions were designed using orthogonal experiment design (OED) and central composite design (CCD) and optimized using the direct measurement and response surface methods. The modified Gompertz model (MGM) and a logistic function model (LFM) were employed to determine the kinetics of hydrogen-rich bioenergy production from the peanut shell. The OED results showed that peanut shell pretreated for 12 h at 50 ℃ produced the maximum TRS of 3.16%, exhibiting a better result than CCD. A maximum hydrogen yield of 109.2 mL was obtained when the PSP was pretreated at -80 ℃ for 12 h, which was 54.46% higher than the control. Model simulation indicated that the LFM predicted hydrogen production more accurately than the MGM, as evidenced by the high correlation coefficient and high Pearson’s correlation between predicted and actual values. The high hydrogen yield promotion and the realization of no energy consumption of the temperature pretreatment in some peanut shell planting areas, can provide a potential application for cost-efficient and stabilized bioenergy recovery from peanut shell with temperature pretreatment.
  • [1]
    荆勇,冯晶,赵立欣, 等.木屑生物炭对秸秆和牛粪厌氧发酵产甲烷性能的影响[J].环境工程,2021,39(1):154-160.
    [2]
    陈思哲,刘国华,李波, 等.氢氧化钠和碱性双氧水预处理对水稻秸秆酶解效果的影响[J].环境科学研究,2022,35(8):1864-1872.
    [3]
    朱心宇,张洁,孙晓娇, 等.厌氧互营苯甲酸降解菌Sporotomaculum syntrophicum对玉米秸秆沼气发酵的生物强化作用[J].环境工程,2022,40(5):75-81.
    [4]
    康雅茹,田光明,何若.小麦秸秆预处理对厌氧消化性能的影响研究[J].环境污染与防治,2022,44(1):1-7.
    [5]
    王芳,牛卫生,罗冰, 等.热化学预处理玉米秸秆厌氧消化产气特性研究[J].太阳能学报,2015,36(8):1965-1970.
    [6]
    黄菊,徐艳,史小琴, 等.爆炸冲击波联合碱预处理提高玉米秸秆糖化率的研究[J].太阳能学报,2022,43(12):464-468.
    [7]
    DOS SANTOS ROCHA M S R, PRATTO B, de SOUSA JÚNIOR R, et al. A kinetic model for hydrothermal pretreatment of sugarcane straw[J]. Bioresource Technology, 2017, 228: 176-185.
    [8]
    ZHOU X F, LI Q, ZHANG Y L, et al. Effect of hydrothermal pretreatment on Miscanthus anaerobic digestion[J]. Bioresource Technology, 2017, 224: 721-726.
    [9]
    YOUSEFIFAR A, BAROUTIAN S, FARID M M, et al. Hydrothermal processing of cellulose: a comparison between oxidative and non-oxidative processes[J]. Bioresource Technology, 2017, 226: 229-237.
    [10]
    崔思娇,汪宇,张大军, 等.正交设计法优选通脉分散片的水提取工艺[J].当代化工,2023,52(3):575-578.
    [11]
    龙维斌,习锟,吕鹏飞, 等.中心复合设计法优化聚异丁烯丁二酸酐的制备工艺[J].化工管理,2021(36):152-155.
    [12]
    ZHANG Y, YUAN J F, GUO L J. Enhanced bio-hydrogen production from cornstalk hydrolysate pretreated by alkaline-enzymolysis with orthogonal design method[J]. International Journal of Hydrogen Energy, 2020,45(6): 3750-3759.
    [13]
    MACHROUHI A, ALILOU H, FARNANE M, et al. Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design[J]. Journal of Science: Advanced Materials and Devices, 2019,4(4): 544-553.
    [14]
    ZHAO X, LI D Y, XU S H, et al. Clostridium guangxiense sp nov and Clostridium neuense sp nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(3): 710-715.
    [15]
    刘闻远,辛娅,王殿龙, 等.生物炭和乙醇对油菜秸秆沼气发酵特性的影响[J].太阳能学报,2023,44(3):277-283.
    [16]
    毛亚玲,李俊娥,于静, 等.酒酒球菌和酿酒酵母共接种发酵动力学模型建立[J].食品科学,2023,44(2):156-164.
    [17]
    赵凯,许鹏举,谷广烨, 等.3,5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学,2008(8):534-536.
    [18]
    MINER G. Standard Methods for the Examination of Water and Wastewater, 21st Edition[M]. Journal American Water Works Association, 2006, (1):130.
    [19]
    曹麒,何雨恒,卓桂华, 等.高温条件下初始pH值对污泥-餐厨垃圾联合厌氧发酵产氢余物产CH4的影响[J].环境工程,2022,40(9):150-157.
    [20]
    TIAN Y T, ZENG H L, XU Z B, et al. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus)[J]. Carbohydrate Polymers, 2012, 88(2): 522-529.
    [21]
    ZHANG Y, YUAN J F, GUO L J. Enhanced bio-hydrogen production from cornstalk hydrolysate pretreated by alkaline-enzymolysis with orthogonal design method[J]. International Journal of Hydrogen Energy, 2020, 45(6):3750-3759.
    [22]
    ZOU S Z, WANG H, WANG X J, et al. Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion[J]. Applied Energy, 2016, 179: 191-202.
    [23]
    龙於洋,范丽娇,沈东升, 等.秸秆废物高值转化5-羟甲基糠醛的研究动态分析[J/OL].安全与环境学报:1-7[2023-04-20

    ]. https://doi.org/10.13637/j.issn.1009-6094.2022.2594.
    [24]
    QI N, HU X M, XIN X T, et al. Mechanisms of biohydrogen recovery enhancement from peanut shell by C. guangxiense: temperature pretreatment ranges from -80 to 100℃[J]. Bioresource Technology, 2020, 304: 123026.
    [25]
    QI N, ZHAO X, LIANG C H, et al. Enhancement of fermentative H2 production with peanut shell as supplementary substrate: effects of acidification and buffer effect[J]. Bioresource Technology, 2019, 280: 502-504.
    [26]
    李亚猛,荆艳艳,蒋丹萍, 等. 酸碱预处理对三球悬铃木落叶发酵产氢的影响[C]//中国高等教育学会工程热物理专业委员会.高等教育学会工程热物理专业委员会第二十一届全国学术会议论文集——热物理测量技术,2015:112-123.
    [27]
    董丽丽. 碱尿预处理秸秆强化发酵产氢烷效能及机制研究[D].哈尔滨:哈尔滨工业大学,2021.
    [28]
    ANTONOPOULOU G, VAYENAS D, LYBERATOS G. Ethanol and hydrogen production from sunflower straw: the effect of pretreatment on the whole slurry fermentation[J]. Biochemical Engineering Journal, 2016, 116: 65-74.
  • Relative Articles

    [1]HUANG Jialiang, MU Lan, WU Wanting, PENG Hao, TAO Junyu, SONG Yingjin, SHI Yan, CHEN Guanyi. SCREENING AND HYDROGEN PRODUCTION PERFORMANCE OF FOUR MIXED PHOTOSYNTHETIC ANAEROBIC HYDROGEN-PRODUCING BACTERIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 301-310. doi: 10.13205/j.hjgc.202409030
    [2]SONG Yuru, SUN Yunan, ZHANG Hongnan, CHEN Guanyi, DAN Zeng, CHENG Zhanjun, YAN Beibei. INCINERATION CHARACTERISTICS AND KINETICS OF PHOTOCURED 3D PRINTING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 292-300. doi: 10.13205/j.hjgc.202409029
    [3]LÜ Wenxin, LUAN Pengpeng, ZHOU Hui, WANG Jinglan, HE Sirong, CHENG Zhanjun, LI Ning, YAN Beibei, CHEN Guanyi. PYROLYSIS CHARACTERISTICS AND KINETIC ANALYSIS OF COMMON PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 110-118. doi: 10.13205/j.hjgc.202401015
    [4]ZHANG Mingchuan, CHEN Xi, WANG Wenjing, XU Xinyang. RESEARCH ON TREATMENT PERFORMANCE AND DYNAMICS OF ZINC CONTAINING WASTEWATER BY SPRAY BED ELECTRO-DEPOSITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 37-42. doi: 10.13205/j.hjgc.202302006
    [5]ZHANG Bo, ZHAO Yi-hua, TAO Jun, JI Min, MA Tong-yu, SHANG Chen. INFLUENCE MECHANISM AND KINETIC STUDY OF CaO PRETREATMENT ON HIGH-SOLID SLUDGE ANAEROBIC DIGESTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 140-146. doi: 10.13205/j.hjgc.202104022
    [6]ZHANG Hong-yu, JIANG Tao, ZHANG Yuan-qin. CO-COMBUSTION CHARACTERISTICS AND KINETIC ANALYSIS OF COMBUSTIBLE WASTE AND PULVERIZED COAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 185-189. doi: 10.13205/j.hjgc.202009029
    [7]LI Hua-fan, KE Yi-hong, ZHANG Qing-yi, YANG Lin, ZHENG Yu-yi, LIU Chang-qing. EFFECT OF pH ON HYDROGEN PRODUCTION BY CODIGESTION OF SEWAGE SLUDGE AND LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 58-64. doi: 10.13205/j.hjgc.202008010
    [12]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
    [13]Peng Yu, Zhang Houhu, Cai Bangcheng, Zhang Yi, Zhao Qing, Zhang Junjun. STUDY ON PREPARATION OF PEANUT SHELL-BASED AETIVATED CRABON BY MICROWAVE IRRADIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 42-47. doi: 10.13205/j.hjgc.201505010
  • Cited by

    Periodical cited type(8)

    1. 薛垂宝. 中国城镇污水处理工艺的主要污染物去除效率分析. 城市建设理论研究(电子版). 2024(08): 211-213 .
    2. 范荣桂,关怀远,张玛格. PN/A工艺应用于主流城市污水处理的研究进展. 应用化工. 2023(03): 880-884+891 .
    3. 陈杏,罗俊晖,李治国,姚创,刘建新,袁维芳. A/A/O微曝氧化沟工艺提标改造效果分析. 工业用水与废水. 2023(03): 26-31 .
    4. 王海攀,谷明川,李洪涛,靳海涛,戴威. IFAS工艺处理尼龙66帘子布生产废水. 工业水处理. 2023(07): 207-211 .
    5. 易境,邓宇,韩红波,钟言. 膨胀珍珠岩粉末强化AAO工艺同步脱氮除磷研究. 给水排水. 2023(S2): 187-193 .
    6. 邓宇,杨东海,陈慧珍,易境,戴晓虎. 生物载体在污水处理中的研究进展. 环境科学与管理. 2022(04): 107-112 .
    7. 余浩涛,于莉芳,李韧,高宇,张琼,乔冰闯,郑兰香,彭党聪. 部分反硝化耦合厌氧氨氧化IFAS系统脱氮性能. 中国环境科学. 2022(09): 4107-4114 .
    8. 常根旺,杨津津,李绍康,罗景文,杨一飞,李翔. 短程反硝化耦合厌氧氨氧化强化脱氮工艺研究与应用进展. 环境工程技术学报. 2022(05): 1519-1527 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.1 %FULLTEXT: 12.1 %META: 84.5 %META: 84.5 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.7 %其他: 26.7 %上海: 1.7 %上海: 1.7 %北京: 0.9 %北京: 0.9 %十堰: 3.4 %十堰: 3.4 %南宁: 0.9 %南宁: 0.9 %台州: 2.6 %台州: 2.6 %合肥: 0.9 %合肥: 0.9 %天津: 1.7 %天津: 1.7 %宣城: 1.7 %宣城: 1.7 %常德: 0.9 %常德: 0.9 %广州: 0.9 %广州: 0.9 %张家口: 1.7 %张家口: 1.7 %成都: 2.6 %成都: 2.6 %扬州: 2.6 %扬州: 2.6 %昆明: 0.9 %昆明: 0.9 %朝阳: 1.7 %朝阳: 1.7 %杭州: 0.9 %杭州: 0.9 %武汉: 0.9 %武汉: 0.9 %温州: 0.9 %温州: 0.9 %湖州: 1.7 %湖州: 1.7 %漯河: 5.2 %漯河: 5.2 %石家庄: 0.9 %石家庄: 0.9 %肇庆: 2.6 %肇庆: 2.6 %芒廷维尤: 22.4 %芒廷维尤: 22.4 %芝加哥: 2.6 %芝加哥: 2.6 %衢州: 1.7 %衢州: 1.7 %西宁: 2.6 %西宁: 2.6 %运城: 4.3 %运城: 4.3 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %其他上海北京十堰南宁台州合肥天津宣城常德广州张家口成都扬州昆明朝阳杭州武汉温州湖州漯河石家庄肇庆芒廷维尤芝加哥衢州西宁运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(4) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return