Citation: | HUANG Shaolin, WANG Huijun, HE Ning, HONG Wuyang. HYPERSPECTRAL REMOTE-SENSING ESTIMATE OF CARBON STORAGE OF SUBTROPICAL PINUS MASSONIANA FOREST IN CHANGTING COUNTY, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 147-153. doi: 10.13205/j.hjgc.202405019 |
[1] |
ILARI A, DUCA D, BOAKYE K A, et al. Carbon footprint and feedstock quality of a real biomass power plant fed with forestry and agricultural residues[J]. Resources, 2022, 11(2): 7.
|
[2] |
SABINE C L, HEIMANN M, ARTAXO P, et al. Current status and past trends of the global carbon cycle[C]//Field C B, Raupach M R. The Global Carbon Cycle, Washington: Island Press, 2004.
|
[3] |
YUE T X, WANG Y F, DU Z P, et al. Analysing the uncertainty of estimating forest carbon stocks in China[J]. Biogeosciences, 2016, 13(13): 3991-4004.
|
[4] |
涂宏涛,周红斌,马国强,等. 基于第九次森林资源清查的云南森林碳储量特征研究[J].西北林学院学报, 2023, 38(3): 185-193.
|
[5] |
蔡博峰, 朱松丽, 于胜民, 等.《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11.
|
[6] |
龙依, 蒋馥根, 孙华, 等. 基于带宽优选地理加权回归模型的深圳市植被碳储量反演[J].生态学报, 2022, 42(12): 4933-4945.
|
[7] |
庞勇, 李增元, 余涛, 等. 森林碳储量遥感卫星现状及趋势[J]. 航天返回与遥感, 2022, 43(6): 1-15.
|
[8] |
PANDEY P C, KOUTSIAS N, PETROPOULOS G P, et al. Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers: a review of the state of the art[J]. Geocarto International, 2021, 36(9): 957-988.
|
[9] |
WANG X, LI R, DING H, et al. Fine-scale improved carbon bookkeeping model using landsat time series for subtropical forest, southern China[J]. Remote Sensing, 2022, 14(3): 753.
|
[10] |
师吉红,项佳,刘健, 等. 南方红壤典型水土流失区马尾松林地上林木碳储量的遥感监测:以长汀县河田镇为例[J].生态学报, 2021, 41(6): 2151-2160.
|
[11] |
UNIYAL S, PUEOHIT S, CHAURASIA K, et al. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India[J]. Urban Forestry & Urban Greening, 2022, 67(1): 1-8.
|
[12] |
黄绍霖, 徐涵秋, 林娜, 等. 亚热带地区马尾松林碳储量的遥感估算:以长汀河田盆地为例[J]. 生态学报, 2013, 33(10): 2992-3001.
|
[13] |
黄绍霖, 徐涵秋, 曾宏达, 等. 福建长汀河田盆地的马尾松林碳储量时空动态变化[J]. 地球科学—中国地质大学学报, 2013, 38(5): 1081-1090.
|
[14] |
LU D S. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
|
[15] |
MUTANGA O, SKIDMORE A K. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International Journal of Remote Sensing, 2004, 25(19): 3999-4014.
|
[16] |
韩立立, 谢锦升, 曾宏达, 等. 百喜草治理对退化红壤生态系统碳库及分配的影响[J]. 亚热带资源与环境学报, 2013, 8(1): 33-40.
|
[17] |
李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
|
[18] |
曾帅, 况润元, 肖阳, 等. 鄱阳湖湿地植物实测高光谱数据分类[J]. 遥感信息, 2017, 32(5): 75-81.
|
[19] |
CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903.
|
[20] |
CHO M A, SKIDMORE A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sensing of Environment, 2006, 101(2): 181-193.
|
[21] |
白丽敏, 李粉玲, 常庆瑞, 等. 结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J]. 植物营养与肥料学报, 2018, 24(5): 1178-1184.
|
[22] |
ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]//Third ERTS Symposium, Washington D.C.: NASA, 1973.
|
[23] |
LYON J G, YUAN D, LUNETTA R S, et al. A change detection experiment using vegetation indices[J]. Photogrammetric Engineering and Remote Sensing, 1998, 64(2): 143-150.
|
[24] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
|