Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CAO Lixia, LI Wenshuan, LIN Xin, LI Xiaojun, FU Wanlong. EFFECTS OF SELENIUM APPLICATION ON ARSENIC UPTAKE AND ACCUMULATION IN RICE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 271-276. doi: 10.13205/j.hjgc.202307036
Citation: HUANG Shaolin, WANG Huijun, HE Ning, HONG Wuyang. HYPERSPECTRAL REMOTE-SENSING ESTIMATE OF CARBON STORAGE OF SUBTROPICAL PINUS MASSONIANA FOREST IN CHANGTING COUNTY, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 147-153. doi: 10.13205/j.hjgc.202405019

HYPERSPECTRAL REMOTE-SENSING ESTIMATE OF CARBON STORAGE OF SUBTROPICAL PINUS MASSONIANA FOREST IN CHANGTING COUNTY, CHINA

doi: 10.13205/j.hjgc.202405019
  • Received Date: 2023-08-18
    Available Online: 2024-07-11
  • The escalating concern over global warming has prompted a heightened focus on the dynamics of carbon storage within forest ecosystems. Remote sensing technology has emerged as the favored approach for estimating carbon storage across extensive forested regions. Leveraging hyperspectral remote sensing technology enhances the precision of forest carbon storage estimation. Consequently, this study undertook the task of hyperspectral remote sensing to estimate carbon storage within Pinus Massoniana forests and compared the results with estimates derived from Landsat TM multispectral remote sensing. The spectral attributes of Pinus Massoniana forests and their correlation with carbon storage were subjected to analysis. Subsequently, models for estimating carbon storage employing hyperspectral and multispectral remote sensing data were established. The findings indicated a significantly improved accuracy in carbon storage estimation through hyperspectral remote sensing when compared to multispectral remote sensing data. Specifically, the R-squared (R2) value for the model, based on the normalized difference vegetation index data derived from hyperspectral imagery at sensitive wavelengths, approached approximately 0.8, while the root mean square error (RMSE) was notably low at 0.968 t/hm2. Hyperspectral remote sensing data excelled in capturing nuanced spectral variations within vegetation. This capability enhances the retrieval of vital parameters such as vegetation biomass and carbon storage, as well as other biochemical characteristics. Consequently, hyperspectral remote sensing contributes substantially to the enhancement of carbon storage estimation accuracy within Pinus Massoniana forests.
  • [1]
    ILARI A, DUCA D, BOAKYE K A, et al. Carbon footprint and feedstock quality of a real biomass power plant fed with forestry and agricultural residues[J]. Resources, 2022, 11(2): 7.
    [2]
    SABINE C L, HEIMANN M, ARTAXO P, et al. Current status and past trends of the global carbon cycle[C]//Field C B, Raupach M R. The Global Carbon Cycle, Washington: Island Press, 2004.
    [3]
    YUE T X, WANG Y F, DU Z P, et al. Analysing the uncertainty of estimating forest carbon stocks in China[J]. Biogeosciences, 2016, 13(13): 3991-4004.
    [4]
    涂宏涛,周红斌,马国强,等. 基于第九次森林资源清查的云南森林碳储量特征研究[J].西北林学院学报, 2023, 38(3): 185-193.
    [5]
    蔡博峰, 朱松丽, 于胜民, 等.《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11.
    [6]
    龙依, 蒋馥根, 孙华, 等. 基于带宽优选地理加权回归模型的深圳市植被碳储量反演[J].生态学报, 2022, 42(12): 4933-4945.
    [7]
    庞勇, 李增元, 余涛, 等. 森林碳储量遥感卫星现状及趋势[J]. 航天返回与遥感, 2022, 43(6): 1-15.
    [8]
    PANDEY P C, KOUTSIAS N, PETROPOULOS G P, et al. Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers: a review of the state of the art[J]. Geocarto International, 2021, 36(9): 957-988.
    [9]
    WANG X, LI R, DING H, et al. Fine-scale improved carbon bookkeeping model using landsat time series for subtropical forest, southern China[J]. Remote Sensing, 2022, 14(3): 753.
    [10]
    师吉红,项佳,刘健, 等. 南方红壤典型水土流失区马尾松林地上林木碳储量的遥感监测:以长汀县河田镇为例[J].生态学报, 2021, 41(6): 2151-2160.
    [11]
    UNIYAL S, PUEOHIT S, CHAURASIA K, et al. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India[J]. Urban Forestry & Urban Greening, 2022, 67(1): 1-8.
    [12]
    黄绍霖, 徐涵秋, 林娜, 等. 亚热带地区马尾松林碳储量的遥感估算:以长汀河田盆地为例[J]. 生态学报, 2013, 33(10): 2992-3001.
    [13]
    黄绍霖, 徐涵秋, 曾宏达, 等. 福建长汀河田盆地的马尾松林碳储量时空动态变化[J]. 地球科学—中国地质大学学报, 2013, 38(5): 1081-1090.
    [14]
    LU D S. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
    [15]
    MUTANGA O, SKIDMORE A K. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International Journal of Remote Sensing, 2004, 25(19): 3999-4014.
    [16]
    韩立立, 谢锦升, 曾宏达, 等. 百喜草治理对退化红壤生态系统碳库及分配的影响[J]. 亚热带资源与环境学报, 2013, 8(1): 33-40.
    [17]
    李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
    [18]
    曾帅, 况润元, 肖阳, 等. 鄱阳湖湿地植物实测高光谱数据分类[J]. 遥感信息, 2017, 32(5): 75-81.
    [19]
    CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903.
    [20]
    CHO M A, SKIDMORE A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sensing of Environment, 2006, 101(2): 181-193.
    [21]
    白丽敏, 李粉玲, 常庆瑞, 等. 结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J]. 植物营养与肥料学报, 2018, 24(5): 1178-1184.
    [22]
    ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]//Third ERTS Symposium, Washington D.C.: NASA, 1973.
    [23]
    LYON J G, YUAN D, LUNETTA R S, et al. A change detection experiment using vegetation indices[J]. Photogrammetric Engineering and Remote Sensing, 1998, 64(2): 143-150.
    [24]
    HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
  • Relative Articles

    [1]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [2]LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018
    [3]YAN Wenming, JIANG Chao, CHEN Xiang, MA Lin, YAN Binglong, HE Xiangyu, LI Minjuan, TIAN Fen, WU Tingfeng. EFFECT OF TWO COVERING AGENTS ON PASSIVATION OF SIMULATED ARSENIC CONTAMINATED SEDIMENTS BY MICROSCALE TECHNIQUES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 127-133,151. doi: 10.13205/j.hjgc.202211018
    [4]XU Wen-xuan, GUO Zhao-hui, XIAO Xi-yuan, PENG Chi, XIN Li-qing, TAO Ming-ming, HAN Liang-liang. ANAEROBIC FERMENTATION SLURRY RECYCLED FOR DEGRADATION OF HEAVY METAL-CONTAINING RICE STRAW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 123-129. doi: 10.13205/j.hjgc.202101019
    [5]HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007
    [6]FANG Qing, XIAN Ping, MENG Zheng-cheng. ENVIRONMENTAL HEALTH RISK ASSESSMENT MODEL OF AGRICULTURAL LAND BASED ON MONTE CARLO SIMULATION AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 147-152. doi: 10.13205/j.hjgc.202102024
    [7]LIU Heng-bo, YONG Yi, LIU Zheng, YAO Qin-ying, HUANG Xiang, WU Yi. EFFECTS OF SOME SAFE UTILIZATION MEASURES ON RISK MANAGEMENT OF CADMIUM CONTAMINATED PADDY FIELDS IN CHENGDU PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 167-172. doi: 10.13205/j.hjgc.202106025
    [8]WANG Hua-wei, WU Ya-jing, XU Rong, SUN Ying-jie, LI Shu-peng, WANG Ya-nan, ZHONG Chen-yu, SHI Chang-fei. STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 205-210,216. doi: 10.13205/j.hjgc.202109029
    [9]QIU Ya-qun, LI Yi-hua, PENG Pei-qin, LI Er-ping, YU Zhen-hua. EFFECT OF CHELATING AGENT ON PTERIS VITTATA FOR REMEDIATION OF ARSENIC-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 204-209,119. doi: 10.13205/j.hjgc.202103029
    [10]ZHANG Li, GUO Chao-hui, RAN Hong-zhen, XIAO Xi-yuan, HU Zhi-hao, LI Zhang-zhou. PARTICLE SIZE AND OCCURRENCE CHARACTERISTICS OF ARSENIC IN RIVER SEDIMENTS OF ARSENIC-BEARING MINE AREAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 38-43,119. doi: 10.13205/j.hjgc.202112006
    [11]LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030
    [12]ZHANG Jian-wei, HUANG Tao, PENG Dao-ping, JIANG Shuai, XIA Yu-yang. GAS PRODUCTION PERFORMANCE OF RICE STRAW ANAEROBIC FERMENTATION BY CRYOGENIC FREEZING PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 217-221. doi: 10.13205/j.hjgc.202008036
    [13]YE Qian-ling, JIN Xin, CHEN Xiao, SHI Lin, YANG Qi, LIU Zhao-xiang, WANG Jing, ZHANG Xiao-lan, WANG Shu-tang. ADSORPTION OF As(Ⅲ) ON La2O3 NANOPARTICLES IN AQUEOUS SOLUTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 105-111,134. doi: 10.13205/j.hjgc.202001016
    [14]ZHOU Li-wei, WANG Hang, LIU Yang-sheng. EFFECT OF ELECTRODE-ORIENTATED ELECTROKINETIC ENHANCEMENT ON PHYTOREMEDIATION ON ARSENIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 228-233. doi: 10.13205/j.hjgc.202010036
    [15]CHEN Mei-feng, LI Xin-li, YANG Pei-lin, LUO Qian, QIN Fan-xin. STABILIZATION OF AS CONTAMINATED SOILS BY MODIFIED NANO-TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 222-227. doi: 10.13205/j.hjgc.202010035
  • Cited by

    Periodical cited type(1)

    1. 刘晓凯,顾雪元. 淹水条件下硝酸根对土壤中砷溶出过程的影响与机制. 环境化学. 2023(12): 4205-4216 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 84.7 %META: 84.7 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.2 %其他: 17.2 %其他: 0.6 %其他: 0.6 %三亚: 2.5 %三亚: 2.5 %上海: 0.6 %上海: 0.6 %东莞: 0.6 %东莞: 0.6 %保定: 0.6 %保定: 0.6 %北京: 0.6 %北京: 0.6 %十堰: 0.6 %十堰: 0.6 %南宁: 1.3 %南宁: 1.3 %南昌: 0.6 %南昌: 0.6 %南通: 1.3 %南通: 1.3 %台州: 0.6 %台州: 0.6 %吕梁: 0.6 %吕梁: 0.6 %大同: 1.3 %大同: 1.3 %天津: 2.5 %天津: 2.5 %宜春: 0.6 %宜春: 0.6 %宣城: 0.6 %宣城: 0.6 %常德: 1.3 %常德: 1.3 %张家口: 0.6 %张家口: 0.6 %成都: 0.6 %成都: 0.6 %扬州: 1.3 %扬州: 1.3 %昆明: 1.3 %昆明: 1.3 %晋城: 0.6 %晋城: 0.6 %杭州: 2.5 %杭州: 2.5 %武汉: 1.9 %武汉: 1.9 %温州: 0.6 %温州: 0.6 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 3.8 %濮阳: 3.8 %芒廷维尤: 20.4 %芒廷维尤: 20.4 %芝加哥: 5.1 %芝加哥: 5.1 %衢州: 0.6 %衢州: 0.6 %西宁: 13.4 %西宁: 13.4 %西安: 0.6 %西安: 0.6 %贵阳: 1.9 %贵阳: 1.9 %运城: 5.7 %运城: 5.7 %遵义: 0.6 %遵义: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %马鞍山: 0.6 %马鞍山: 0.6 %其他其他三亚上海东莞保定北京十堰南宁南昌南通台州吕梁大同天津宜春宣城常德张家口成都扬州昆明晋城杭州武汉温州湖州漯河濮阳芒廷维尤芝加哥衢州西宁西安贵阳运城遵义郑州重庆长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads(5) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return