Citation: | WU Yan, RONG Nai, HAN Long, LIU Kaiwei, WANG Jiuheng, MU Zhengyong, WANG Shanshan, SHI Xiuliang. STEAM HYDRATION ACTIVATION OF CELLULOSE TEMPLATE MODIFIED Ca-BASED CO2 SORBENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 163-171. doi: 10.13205/j.hjgc.202405021 |
[1] |
IEA. Global energy review: CO2 emissions in 2022[EB/OL]. https://www.iea.org/reports/co2-emissions-in-2022, 2023-03.
|
[2] |
张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021(23): 70-80.
|
[3] |
府师敏, 陈美玲, 卢平, 等改性钙基吸附剂脱汞性能的实验研究[J]. 环境工程, 2018, 36(1): 103-107.
|
[4] |
ZHANG X Y, LIU W Q, ZHOU S M, et, al. A review on granulation of CaO-based sorbent for carbon dioxide capture[J].Chemical Engineering Journal, 2022, 446(P2):136880.
|
[5] |
DUNSTAN M T, DONAT F, BORK A H, et al. CO2 capture at medium to high temperature using solid oxide-based sorbents: fundamental aspects, mechanistic insights, and recent advances[J]. Chemical Reviews, 2021, 121(20): 12681-12745.
|
[6] |
ZHAO M, HE X, JI G Z, et al. Zirconia incorporated calcium looping absorbents with superior sintering resistance for carbon dioxide capture from: in situ or ex situ processes. Sustain[J]. Energy & Fuels, 2018, 2(12): 2733-2741.
|
[7] |
XU Y Q, DING H R, LUO C, et al. NaBr-enhanced CaO-based sorbents with a macropore-stabilized microstructure for CO2 capture[J]. Energy & Fuels, 2018, 32(8): 8571-8578.
|
[8] |
HU Y C, LIU W Q, SUN J, et al. Structurally improved CaO based sorbent by organic acids for high temperature CO2 capture[J]. Fuel, 2016, 167: 17-24.
|
[9] |
WANG K, GU F, CLOUGH P T, et al. CO2 capture performance of gluconic acid modified limestone dolomite mixtures under realistic conditions[J]. Energy & Fuels, 2019, 33(8): 7550-7560.
|
[10] |
GUO H X, KOU X C, ZHAO Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246.
|
[11] |
RONG N, WANG J H, LIU K W, et al. Enhanced CO2 capture durability and mechanical properties using cellulose-templated CaO-based pellets with steam injection during calcination[J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1533-1541.
|
[12] |
RONG N, WU Y, WANG J H, et al. Steam reactivation of bio-templated CaO-based pellets for cyclic CO2 capture[J]. Energy & Fuels, 2021(35): 6056-6067.
|
[13] |
ZHOU Y, CHEN Y N, LI W L, et al. High-temperature CO2 uptake and mechanical strength enhancement of the calcium aluminate cement-bound carbide slag pellets[J]. Energy & Fuels, 2021, 35(9): 8117-8125.
|
[14] |
梁成. 生物质模板改性钙基吸收剂颗粒循环脱碳性能研究[D]. 南京:南京师范大学, 2019.
|
[15] |
SUN J, LIANG C, TONG X L, et al. Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets[J]. Fuel, 2019, 239: 1046-1054.
|
[16] |
LI H L, QU M Y, YANG Y D, et al. One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture[J]. Chemical Engineering Journal, 2019, 374: 619-625.
|
[17] |
XU Y Q, DING H R, LUO C, et al. Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method[J]. Chemical Engineering Journal, 2018, 334: 2520-2529.
|
[18] |
LI H L, HU Y C, CHEN H Q et al. Porous spherical calcium aluminate-supported CaO-based pellets manufactured via biomass-templated extrusion-spheronization technique for cyclic CO2 capture[J]. Environmental Science and Pollution Research, 2019, 26(21): 21972-21982.
|
[19] |
MA X T, LI Y J, YAN X Y, et al. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chemical Engineering Journal, 2019, 361: 235-244.
|
[20] |
XU Y Q, DING H R, LUO C, et al. Porous spherical calcium-based sorbents prepared by a bamboo templating method for cyclic CO2 capture[J]. Fuel, 2018, 219: 94-102.
|
[21] |
RIDHA F N, WU Y H, MANOVIC V, et al. Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets[J]. Chemical Engineering Journal, 2015, 274: 69-75.
|
[22] |
GONZÁLEZ B, LIU W, SULTAN D S, et al. The effect of steam on a synthetic Ca-based sorbent for carbon capture[J]. Chemical Engineering Journal, 2016, 285: 378-383.
|
[23] |
WANG N N, FENG Y, GUO X. Insights into the role of H2O in the carbonation of CaO nanoparticle with CO2[J]. Physical Chemistry, 2018, 37(122): 21401-21410.
|
[24] |
RONG N, WANG J H, HAN L, et al. Effect of steam addition during calcination on CO2 capture performance and strength of bio-templated Ca-based pellets[J]. Journal of CO2 Utilization, 2022(63): 1021-1027.
|
[25] |
WANG Y, LIN S Y, SUZUKI Y. Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor[J]. Fuel Processing Technology, 2010, 91(8): 958-963.
|
[26] |
LI Z H, WANG Y, XU K, et al. Effect of steam on CaO regeneration, carbonation and hydration reaction for CO2 capture[J]. Fuel Processing Technology, 2016, (151): 101-106.
|
[27] |
RONG N, WANG Q H, FANG M X, et al. Steam hydration reactivation of CaO-based sorbent in cyclic carbonation/calcination for CO2 capture[J]. Energy & Fuels, 2013, 27: 5332-5340.
|
[28] |
WYLLIE, PETER J, O FRANK T. The system CaO-CO2-H2O and the origin of carbonatites[J]. Journal of Petrology1, 1960: 1-46.
|
[29] |
DONG J, TANG Y J, NZIHOU A, et al. Effect of steam addition during carbonation, calcination or hydration on re-activation of CaO sorbent for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101167.
|
[30] |
余志健, 段伦博, 苏成林, 等. 蒸汽活化水泥支撑钙基吸收剂活性及强度特性[J]. 化工学报, 2017, 68(4): 1637-1645.
|
[31] |
荣鼐, 樊宏韬, 王勤辉, 等. 蒸汽活化对天然钙基吸收剂循环碳酸化捕获CO2的影响[J]. 燃烧科学与技术, 2018, 3(24): 245-251.
|
[32] |
COPPOLA A, PALLADINO L, MONTAGNARO F, et al. Reactivation by steam hydration of sorbents for fluidized-bed calcium looping[J]. Energy & Fuels, 2015, 29(7): 4436-4446.
|
[33] |
YU Z J, DUAN L B, SU C L, et al. Effect of steam hydration on reactivity and strength of cement-supported calcium sorbents for CO2 capture[J]. Greenhouse Gases Science & Technology, 2017, 7(5): 915-926.
|
[34] |
ANDERSON T L. Fracture Mechanics: Fundamentals and Applications[M]. Boca Raton: CRC Press, 2005.
|
[35] |
TONG X L, LIU W Q, YANG Y D, et al. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Processing Technology, 2019, 193: 149-158.
|
[36] |
SUN J, SUN Y, YANG Y D, et al. Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature[J]. Applied Energy, 2019, 242: 919-930.
|
[37] |
SUN J, WANG W Y, YANG Y D, et al. Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation[J]. Fuel, 2020, 266: 117056.
|