Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CAO Lixia, LI Wenshuan, LIN Xin, LI Xiaojun, FU Wanlong. EFFECTS OF SELENIUM APPLICATION ON ARSENIC UPTAKE AND ACCUMULATION IN RICE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 271-276. doi: 10.13205/j.hjgc.202307036
Citation: LI Xingwu, YUAN Shushan, YE Han, WANG Zhongyi, OUYANG Lan, LIANG Sha, HU Jingping, YANG Jiakuan. ANALYSIS OF FLUE GAS CHARACTERISTICS AND PROCESS OPTIMIZATION OF CEMENT KILN CO-PROCESSING MUNICIPAL SLUDGE BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 206-214. doi: 10.13205/j.hjgc.202405026

ANALYSIS OF FLUE GAS CHARACTERISTICS AND PROCESS OPTIMIZATION OF CEMENT KILN CO-PROCESSING MUNICIPAL SLUDGE BASED ON ASPEN PLUS

doi: 10.13205/j.hjgc.202405026
  • Received Date: 2023-04-26
    Available Online: 2024-07-11
  • In this study, a simulation model of cement kiln co-processing municipal sludge technology was developed by Aspen Plus. Based on the case that the daily production of clinker was 10000 t/d, the model aimed to analyze the effect of the changes in feed rate and sludge moisture content on flue gas emission law, the calciner’s temperature and coal consumption. The results showed that when the moisture content of sludge remained at 60%, and the feed rate of sludge ranged from 1 t/d to 20 t/d, the concentration of NO and SO2 in flue gas changed from 205.5 mg/m3 and 26.5 mg/m3 to 56.7 mg/m3 and 26.8 mg/m3, respectively. When the feed rate of sludge remained at 10 t/d, and the moisture content of sludge ranged from 10% to 90%, the concentration of NO decreased from 136.5 mg/m3 to 133.1 mg/m3 and then increased to 134.6 mg/m3, while the concentration of SO2 decreased from 27.4 mg/m3 to 26.2 mg/m3. 50% was the critical moisture content of sludge for the changes in the calciner’s temperature and coal consumption. Higher moisture content decreases the temperature and increases consumption, while the opposite is true for lower moisture content. According to simulation results, it is proposed that by maintaining the calciner temperature within the range of 880~905 ℃, the moisture content of sludge can be controlled at 45%~63%, thereby ensuring a sludge feed rate of 20 t/h. The optimized production parameters are proposed to provide a reference for current technology optimization.
  • [1]
    程运, 李伟明, 王昕晔. 水泥窑协同处置污泥技术发展现状[J]. 中国水泥, 2021(6): 87-91.
    [2]
    俞刚, 凌梦丹, 张俊, 等. 水泥窑协同处置市政污泥技术的探索与应用[J]. 环境科技, 2017, 30(5): 36-40.
    [3]
    XIAO X, TAN J K, YUAN J K, et al. Dual role of O2 concentration on the reducing gases produced and NO reduction during sewage sludge combustion in pilot scale cement precalciner[J]. Waste Management, 2022, 137: 100-109.
    [4]
    刘定平, 周友坤. 基于Aspen Plus水泥窑炉NOx生成仿真与减排优化研究[J]. 硅酸盐通报, 2021, 40(2): 351-358.
    [5]
    ZHANG Y, CAO S X, SHAO S, et al. Aspen Plus-based simulation of a cement calciner and optimization analysis of air pollutants emission[J]. Clean Technologies and Environmental Policy, 2011, 13(3): 459-468.
    [6]
    KÄÄNTEE U, ZEVENHOVEN R, BACKMAN R, et al. Cement manufacturing using alternative fuels and the advantages of process modelling[J]. Fuel Processing Technology, 2004, 85(4): 293-301.
    [7]
    周友坤. 水泥窑炉掺烧污泥多污染物生成过程仿真及控制[D]. 广州: 华南理工大学, 2021.
    [8]
    RAHMAN A, RASUL M G, KHAN M M K, et al. Aspen plus based simulation for energy recovery from waste to utilize in cement plant preheater tower[J]. Energy Procedia, 2014, 61: 922-927.
    [9]
    UDARA S P R A, KOHILAN R, LAKSHAN M A L, et al. Simulation of carbon dioxide capture for industrial applications[J]. Energy Reports, 2020, 6(2): 659-663.
    [10]
    刘楷, 朱丽, 张小军. 复合脱硫技术原理及在华润水泥生产线中的应用[J]. 中国水泥, 2017(10): 79-81.
    [11]
    刘辉敏. 水泥生产技术基础[M]. 2版.北京: 化学工业出版社, 2016.
    [12]
    李芳, 毕明树. 燃煤过程中NOx的生成机理及控制技术[J]. 工业锅炉, 2005(6): 32-35.
    [13]
    王晓霞, 邱兆富, 范吉, 等. 超声波处理剩余污泥有机物、氮和磷的释放特性研究[J]. 环境污染与防治, 2009, 31(3): 66-69.
    [14]
    FANG P, TANG Z J, HUANG J H, et al. Using sewage sludge as a denitration agent and secondary fuel in a cement plant: a case study[J]. Fuel Processing Technology, 2015, 137: 1-7.
    [15]
    杨晓阳, 王宝凤, 宋旭涛, 等. 污泥与高硫煤共水热碳化过程中硫氮形态转化规律[J]. 化工学报, 2022, 73(11): 5211-5219.
  • Relative Articles

    [1]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [2]LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018
    [3]YAN Wenming, JIANG Chao, CHEN Xiang, MA Lin, YAN Binglong, HE Xiangyu, LI Minjuan, TIAN Fen, WU Tingfeng. EFFECT OF TWO COVERING AGENTS ON PASSIVATION OF SIMULATED ARSENIC CONTAMINATED SEDIMENTS BY MICROSCALE TECHNIQUES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 127-133,151. doi: 10.13205/j.hjgc.202211018
    [4]XU Wen-xuan, GUO Zhao-hui, XIAO Xi-yuan, PENG Chi, XIN Li-qing, TAO Ming-ming, HAN Liang-liang. ANAEROBIC FERMENTATION SLURRY RECYCLED FOR DEGRADATION OF HEAVY METAL-CONTAINING RICE STRAW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 123-129. doi: 10.13205/j.hjgc.202101019
    [5]HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007
    [6]FANG Qing, XIAN Ping, MENG Zheng-cheng. ENVIRONMENTAL HEALTH RISK ASSESSMENT MODEL OF AGRICULTURAL LAND BASED ON MONTE CARLO SIMULATION AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 147-152. doi: 10.13205/j.hjgc.202102024
    [7]LIU Heng-bo, YONG Yi, LIU Zheng, YAO Qin-ying, HUANG Xiang, WU Yi. EFFECTS OF SOME SAFE UTILIZATION MEASURES ON RISK MANAGEMENT OF CADMIUM CONTAMINATED PADDY FIELDS IN CHENGDU PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 167-172. doi: 10.13205/j.hjgc.202106025
    [8]WANG Hua-wei, WU Ya-jing, XU Rong, SUN Ying-jie, LI Shu-peng, WANG Ya-nan, ZHONG Chen-yu, SHI Chang-fei. STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 205-210,216. doi: 10.13205/j.hjgc.202109029
    [9]QIU Ya-qun, LI Yi-hua, PENG Pei-qin, LI Er-ping, YU Zhen-hua. EFFECT OF CHELATING AGENT ON PTERIS VITTATA FOR REMEDIATION OF ARSENIC-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 204-209,119. doi: 10.13205/j.hjgc.202103029
    [10]ZHANG Li, GUO Chao-hui, RAN Hong-zhen, XIAO Xi-yuan, HU Zhi-hao, LI Zhang-zhou. PARTICLE SIZE AND OCCURRENCE CHARACTERISTICS OF ARSENIC IN RIVER SEDIMENTS OF ARSENIC-BEARING MINE AREAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 38-43,119. doi: 10.13205/j.hjgc.202112006
    [11]LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030
    [12]ZHANG Jian-wei, HUANG Tao, PENG Dao-ping, JIANG Shuai, XIA Yu-yang. GAS PRODUCTION PERFORMANCE OF RICE STRAW ANAEROBIC FERMENTATION BY CRYOGENIC FREEZING PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 217-221. doi: 10.13205/j.hjgc.202008036
    [13]YE Qian-ling, JIN Xin, CHEN Xiao, SHI Lin, YANG Qi, LIU Zhao-xiang, WANG Jing, ZHANG Xiao-lan, WANG Shu-tang. ADSORPTION OF As(Ⅲ) ON La2O3 NANOPARTICLES IN AQUEOUS SOLUTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 105-111,134. doi: 10.13205/j.hjgc.202001016
    [14]ZHOU Li-wei, WANG Hang, LIU Yang-sheng. EFFECT OF ELECTRODE-ORIENTATED ELECTROKINETIC ENHANCEMENT ON PHYTOREMEDIATION ON ARSENIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 228-233. doi: 10.13205/j.hjgc.202010036
    [15]CHEN Mei-feng, LI Xin-li, YANG Pei-lin, LUO Qian, QIN Fan-xin. STABILIZATION OF AS CONTAMINATED SOILS BY MODIFIED NANO-TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 222-227. doi: 10.13205/j.hjgc.202010035
  • Cited by

    Periodical cited type(1)

    1. 刘晓凯,顾雪元. 淹水条件下硝酸根对土壤中砷溶出过程的影响与机制. 环境化学. 2023(12): 4205-4216 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 84.7 %META: 84.7 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.2 %其他: 17.2 %其他: 0.6 %其他: 0.6 %三亚: 2.5 %三亚: 2.5 %上海: 0.6 %上海: 0.6 %东莞: 0.6 %东莞: 0.6 %保定: 0.6 %保定: 0.6 %北京: 0.6 %北京: 0.6 %十堰: 0.6 %十堰: 0.6 %南宁: 1.3 %南宁: 1.3 %南昌: 0.6 %南昌: 0.6 %南通: 1.3 %南通: 1.3 %台州: 0.6 %台州: 0.6 %吕梁: 0.6 %吕梁: 0.6 %大同: 1.3 %大同: 1.3 %天津: 2.5 %天津: 2.5 %宜春: 0.6 %宜春: 0.6 %宣城: 0.6 %宣城: 0.6 %常德: 1.3 %常德: 1.3 %张家口: 0.6 %张家口: 0.6 %成都: 0.6 %成都: 0.6 %扬州: 1.3 %扬州: 1.3 %昆明: 1.3 %昆明: 1.3 %晋城: 0.6 %晋城: 0.6 %杭州: 2.5 %杭州: 2.5 %武汉: 1.9 %武汉: 1.9 %温州: 0.6 %温州: 0.6 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 3.8 %濮阳: 3.8 %芒廷维尤: 20.4 %芒廷维尤: 20.4 %芝加哥: 5.1 %芝加哥: 5.1 %衢州: 0.6 %衢州: 0.6 %西宁: 13.4 %西宁: 13.4 %西安: 0.6 %西安: 0.6 %贵阳: 1.9 %贵阳: 1.9 %运城: 5.7 %运城: 5.7 %遵义: 0.6 %遵义: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %马鞍山: 0.6 %马鞍山: 0.6 %其他其他三亚上海东莞保定北京十堰南宁南昌南通台州吕梁大同天津宜春宣城常德张家口成都扬州昆明晋城杭州武汉温州湖州漯河濮阳芒廷维尤芝加哥衢州西宁西安贵阳运城遵义郑州重庆长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(6) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return