Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002
Citation: ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002

RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM

doi: 10.13205/j.hjgc.202406002
  • Received Date: 2022-11-15
    Available Online: 2024-07-11
  • In this paper, the sulfur autotrophic denitrification (SAD) process start-up was accomplished in an SBR reactor using sodium thiosulfate as an electron donor, and a gradual increase in substrate loading. The rapid start-up and stable operation of the sulfur autotrophic denitrification coupled with anaerobic ammonia oxidation (SAD/A) autotrophic denitrification system was developed by inoculating Anammox sludge with a combined pH and NO-3-N/NH+4-N regulation strategy. The results showed that in 30 days, the denitrification sludge had been domesticated into SAD sludge. After 90 days, the SBR reactor had been successfully enriched with SAD sludge, and more than 85% of NO-3-N had been removed from the system. The SAD/A system was successfully started after 14 days of operation with an optimal inoculation ratio of 3∶1 for both two species of sludge. After 30 days, the NO-3-N removal rate of the system could reach 85% and the NH+4-N removal rate could reach 80%. The coupled system’s best denitrification efficiency was achieved at a pH of 8 and a NO-3-N/NH+4-N ratio of 1.8, and it operated steadily. High-throughput sequencing results showed that the overall species diversity and richness in the SAD/A system was increased after coupling, and the dominant microbial genera were Candidatus Brocadia and Thiobacillus, with similar relative abundances, indicating a good coupling effect of SAD/A.
  • [1]
    方文烨,李祥,黄勇,等. 单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮[J]. 环境科学,2020,41(8):3699-3706.
    [2]
    VAN D G, MULDER A, DE B P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251.
    [3]
    STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature, 2006, 440(7085): 790-794.
    [4]
    黄锐,宋云杰,田亮,等. 厌氧氨氧化耦合反硝化工艺研究进展[J]. 环境科学与技术,2022,45(3):212-222.
    [5]
    MATHAVA K, JIH G L. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-strategies and issues[J]. Journal of Hazardous Materials, 2010, 178(1): 1-9.
    [6]
    SEN L, HAMISH R M, HAO T W, et al. Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities[J]. Water Research, 2018, 143(10): 399-415.
    [7]
    DENG Y F, ZAN F X, HUANG H, et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: a review[J]. Water Research, 2022, 224: 119051.
    [8]
    刘锋,张雪智,王苏琴,等. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展,2022,41(2):990-997.
    [9]
    STROUS M, KUENEN J G, JETTEN M S. Key physiology of anaer-obic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999,65(7):3248-3250.
    [10]
    RUSS L, SPETH D R, JETTEN M S, et al. Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system[J]. Environmental Microbiology, 2014, 16(11): 3487-3498.
    [11]
    QIN Y J, WU C L, CHEN B Q, et al. Short term performance and microbial community of a sulfidebased denitrification and Anammox coupling system at different N/S ratios[J]. Bioresource Technology, 2019, 294: 122130.
    [12]
    夏琼琼,张文安,王雅雄,等.污水处理厌氧氨氧化工艺研究与应用进展[J]. 水处理技术,2019,45(5):1-5.
    [13]
    LI B, ZHANG W, YAN X, et al. Startup and performance stability of a nitritation-anammox reactor using granular sludge[J]. Polish Journal of Environmental Studies, 2017, 26(1): 173-180.
    [14]
    STROUS M, HEIJNEN J, KUENE J G, et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorgnisms[J]. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [15]
    国家环境保护总局,水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002:258-282.
    [16]
    魏迅,李伟,姚念民,等. 周进周出二沉池的水力性能测试[J]. 中国给水排水,2006,22(8):105-108.
    [17]
    王巧茹,史旋,宋伟,等. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报,2019,13(11):2593-2600.
    [18]
    MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395-1401.
    [19]
    苏柏懿,吴莉娜,王春艳,等. 硫自养反硝化在工业废水处理中的研究进展[J]. 应用化工,2022,51(4):1070-1076.
    [20]
    MAHMOOD Q, ZHENG P, CAI J, et al. Anoxic sulfide biooxidation using nitrite as electron acceptor[J]. Journal of Hazardous Materials, 2007, 147(1/2): 249-256.
    [21]
    张树军,黄剑明,马淑勍,等. 连续流分段进水短程反硝化-厌氧氨氧化耦合反硝化脱氮特性[J]. 环境工程,2022,41(10):1-8.
    [22]
    KOENIG A, LIU L H. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors[J]. Water Research, 2001, 35(8): 1969-1978.
    [23]
    张雪洁,张向阳,张百德. 硫自养反硝化用于脱氮的研究进展[J]. 应用化工,2023,52(1):287-290

    ,294.
    [24]
    QIAN J, ZHANG M K, WU Y G, et al. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox[J]. Chemosphere, 2018, 208: 793-799.
    [25]
    宋壮壮,吕爽,周顺,等. NO-2-N/NH+4-N对SAD脱氮除碳性能的影响[J]. 中国给水排水,2022,38(21):20-29.
    [26]
    CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandina vian Journal of Statistics, 1984, 11(4): 265-270.
    [27]
    马切切,袁林江,牛泽栋,等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学,2021,42(8):3886-3893.
    [28]
    CHEN F M, LI X, GU W, et al. Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process[J]. Bioresource Technology, 2018, 266: 211-219.
    [29]
    LIU H, ZENG W, LI J M, et al. Effect of S2O2-3-S addition on Anammox coupling sulfur autotrophic denitrification and mechanism analysis using N and O dual isotope effects[J]. Water Research, 2022, 218: 118404.
    [30]
    STROUS M, FUERST J, KRAMER E, et al. Missing lithotroph identified as new planctomycete. Nature, 1999,400(6743):446-449.
    [31]
    KINDAICHI T, YURI S, OZAKI N, et al. Ecophysiological role and function of uncultured Chloroflexi in an Anammox reactor[J]. Water Science & Technology, 2012, 66(12): 2556-2561.
    [32]
    XU X C, ZHANG R, JIANG H B, et al. Sulphur-based autotrophic denitrification of wastewater obtained following graphite production: long-term performance, microbial communities involved, and functional gene analysis[J]. Bioresource Technology, 2020, 306: 123117.
    [33]
    KARTAL B, RATTRAY J, VAN N, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic Applied Microbiology, 2007, 30(1): 39-49.
  • Relative Articles

    [1]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF THE ENVIRONMENTAL BEHAVIORS AND TOXICITY EFFECT OF NANOCERIA IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 7-13,75. doi: 10.13205/j.hjgc.202109002
    [2]MA Yan, WANG Tong, ZHOU Sheng-kun, ZHANG Mei-juan, ZHANG Ya-ru, ZHANG Ze-ren, WU Cui-ping. STUDY ON ADSORPTION BEHAVIOR OF ANILINE ON ZONAL SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 191-196,156. doi: 10.13205/j.hjgc.202110027
    [3]HE Liao, SANG Yi-min, YU Wang, WANG Fei-yu, LU Tao-tao, TENG Zhi-yuan, LIANG Zeng-yin, YU Tao. RESEARCH PROGRESS OF PREPARATION OF CHARRING MATERIALS AND THEIR APPLICATION IN SOIL THERMAL CHARRING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 179-187. doi: 10.13205/j.hjgc.202108025
    [4]LIU Wei-zong, WANG Wen-hai, LI Jun-qi, JIA Gao-feng, WANG Hao-ran. STUDY ON INFILTRATION CHARACTERISTICS OF SOIL UNDER NATURAL DRYING PROCESS CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 72-76. doi: 10.13205/j.hjgc.202004013
    [11]Liu Guo, Wu Xi Li Jun, . RESEARCH ON ADSORPTION OF Cd( Ⅱ) BY EDTA INTERCALATED HYDROTALCITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 41-45?.
  • Cited by

    Periodical cited type(12)

    1. 杨光,杨志强,石磊,郭俊祥,王飞,代鑫. 钢渣资源化利用与实践. 冶金能源. 2024(05): 37-40+59 .
    2. 毕敏娜. 钢铁渣处理与综合利用技术的研究概况与标准化进展. 工程建设标准化. 2024(09): 95-100 .
    3. 殷素红,曾丽莎,梁康,刘上月,吕子洋,吕奇龙. 不同处理工艺下钢渣的铁相赋存状态及其对磁选粉收得率和尾渣胶凝活性的影响. 华南理工大学学报(自然科学版). 2024(10): 76-86 .
    4. 郝以党,王会刚,吴龙,邱桂博,岳昌盛,彭犇. 双碳目标下钢渣处理技术综述及展望. 矿产综合利用. 2024(06): 67-73 .
    5. 王会刚,吴龙,郝以党,彭犇,岳昌盛,杨增奎. 我国钢渣热闷处理技术及装备化进展. 河北冶金. 2022(09): 6-9+14 .
    6. 吴跃东,彭犇,吴龙,闾文,张国华. 国内外钢渣处理与资源化利用技术发展现状综述. 环境工程. 2021(01): 161-165 . 本站查看
    7. 罗晓,张峻搏,何磊,杨雪晶,吕鹏翼. 钢渣对水体中磷的去除性能及机制解析. 环境科学. 2021(05): 2324-2333 .
    8. 陈虎,陶钰禧,周朝刚,赵定国,王书桓,艾立群. 转炉渣热闷法直接上线工艺处理概况及应用. 有色金属科学与工程. 2021(06): 17-25 .
    9. 王会刚,吴龙,彭犇,岳昌盛,张梅,郭敏. 中外钢渣一次处理技术特点及进展. 科学技术与工程. 2020(13): 5025-5031 .
    10. 佟帅,李晨晓,王书桓,赵定国,薛月凯,刘吉猛. 钢渣处理工艺及综合利用分析. 冶金能源. 2020(06): 3-7 .
    11. 张志刚. 钢渣处理设施结构优化浅析. 山西建筑. 2019(10): 162-164 .
    12. 尹星,安莹,包勇超,周振. 钢厂废水深度处理工程设计. 环境工程. 2018(05): 58-60+67 . 本站查看

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 72.8 %META: 72.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.3 %其他: 10.3 %其他: 0.4 %其他: 0.4 %Kennedy Town: 1.1 %Kennedy Town: 1.1 %上海: 0.8 %上海: 0.8 %北京: 2.7 %北京: 2.7 %十堰: 1.5 %十堰: 1.5 %南京: 0.4 %南京: 0.4 %合肥: 0.4 %合肥: 0.4 %常州: 0.4 %常州: 0.4 %拉斯维加斯: 0.4 %拉斯维加斯: 0.4 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %深圳: 0.4 %深圳: 0.4 %漯河: 0.4 %漯河: 0.4 %福州: 1.5 %福州: 1.5 %芒廷维尤: 70.5 %芒廷维尤: 70.5 %苏州: 0.4 %苏州: 0.4 %衢州: 0.4 %衢州: 0.4 %西宁: 6.1 %西宁: 6.1 %邯郸: 0.4 %邯郸: 0.4 %重庆: 0.4 %重庆: 0.4 %雅安: 0.4 %雅安: 0.4 %其他其他Kennedy Town上海北京十堰南京合肥常州拉斯维加斯杭州武汉深圳漯河福州芒廷维尤苏州衢州西宁邯郸重庆雅安

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (361) PDF downloads(41) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return