Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 42 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
WANG Lili. SEPARATION PERFORMANCE OF OIL-WATER-SLUDGE IN HORIZONTAL GRID TUBES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 54-62. doi: 10.13205/j.hjgc.202406007
Citation: WANG Lili. SEPARATION PERFORMANCE OF OIL-WATER-SLUDGE IN HORIZONTAL GRID TUBES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 54-62. doi: 10.13205/j.hjgc.202406007

SEPARATION PERFORMANCE OF OIL-WATER-SLUDGE IN HORIZONTAL GRID TUBES

doi: 10.13205/j.hjgc.202406007
  • Received Date: 2023-03-14
    Available Online: 2024-07-11
  • The transportation and treatment systems of traditional oil fields have large footprint and low efficiency, while the oil-water separation technology of horizontal flow grid tubes is used to transform, exploring energy savings and consumption reduction. The separation law of oil-water-sludge in horizontal grid tubes was studied by combining Fluent software simulation with indoor and field experiments. The numerical simulation results showed that the longer the tube length, the smaller the fluid flow rate, and the better the oil-water separation effect. The inlet oil content increased, and the effluent increased. The oil concentration at the inlet of the six-meter gird tube should be controlled within 0.1%. The results of laboratory and field experiments were basically consistent with the results of numerical simulation, which confirmed the oil-water-sludge separation law explained by numerical simulation. Field experiments have shown that when the inlet flow rate varied between 0.02 m/s to 0.05 m/s, and the inlet oil content varied between 590 mg/L to 2710 mg/L, the effluent oil content was 63 mg/L to 86 mg/L and the suspended solids content was 86 mg/L to 145 mg/L. The grid tube has a stable removal effect on oil and suspended solids, indicating strong resistance to water quality fluctuations. It occupies a small area and has low investment and operating cost.
  • loading
  • [1]
    党伟. 一体化预分水装置在稠油油田的现场试验[J]. 油气田地面工程,2019,38(8):19-22.
    [2]
    胡长朝,党伟,谭文捷,等. 高效旋流气浮一体化预分水除油技术[J]. 科技导报,2014,32(8):39-43.
    [3]
    党伟,胡长朝,王莉莉,等. 一体化预分水装置在高含水油田的应用[J]. 油气田地面工程,2016,35(1):91-93.
    [4]
    陈家庆,王强强,肖建洪,等. 高含水油井采出液预分水技术发展现状与展望[J]. 石油学报,2020,41(11):1434-1444.
    [5]
    苑丹丹,李璐,沈筱彦,等. 油田含油污水处理技术现状与研究进展[J]. 工业用水与废水,2023,54(3):1-5.
    [6]
    刘东贤. 广西百色盆地田东油田污水处理及回注设计[J]. 化学工程与装备,2023,52(11):244-248.
    [7]
    YANG L, AZZOPARDI B J. Phase split of liquid-liquid two-phase flow at a horizontal T-junction[J]. International Journal of Multiphase Flow, 2007, 33(2): 207-216.
    [8]
    YANG L, AZZOPARDI B J, BELGHAZI A, et al. Phase separation of liquid-liquid two-phase flow at a T-junction[J]. AIChE Journal, 2006, 52(1): 141-149.
    [9]
    李川宁. 高含水采出液 T 型管分离器的研发与应用[D].青岛:中国石油大学(华东), 2019.
    [10]
    李全胜. 管式预脱在稠油处理中的应用[J]. 中国石油石化,2016,19(增刊2):56.
    [11]
    解金良. 稠油采出液管式预脱水工艺技术研究与应用[J]. 石化技术,2019,26(7):41-42.
    [12]
    梅洛洛,何利民,许仁辞. 复合T形管内稠油-水预分离性能的研究[J]. 流体机械,2016,44(2):1-6.
    [13]
    田洋阳,崔之健,孙明龙,等. 高含水采出液T形管分离器的流场数值模拟[J]. 石油机械,2021,49(3):132-138.
    [14]
    徐保蕊. T 形管油水分离器流场分布特性及分离性能研究[D].大庆:东北石油大学, 2012.
    [15]
    王帅帅. 电场破乳-动态陶瓷膜串联组合含油污水处理研究[D].北京:北京石油化工学院, 2023.
    [16]
    国家能源局. SY/T 5329—2012 碎屑岩油藏注水水质指标及分析方法[S]. 北京: 石油工业出版社, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return