Citation: | LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015 |
[1] |
ZHAO S Z, WEN Q, ZHANG X Y, et al. Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge[J]. Ceramics International, 2021, 47(15): 21599-21609.
|
[2] |
WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: state-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053.
|
[3] |
JI Z H, PEI Y S. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 2019, 231: 256-267.
|
[4] |
DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35: 429-441.
|
[5] |
ZHANG Y J, HAN Z C, HE P Y, et al. Geopolymer-based catalysts for cost-effective environmental governance: a review based on source control and end-of-pipe treatment[J]. Journal of Cleaner Production, 2020, 263: 121556.
|
[6] |
ZHANG X L, YAO A L, CHEN L. A review on the immobilization of heavy metals with geopolymers[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 173-177.
|
[7] |
徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104-111.
|
[8] |
YI Y R, MA W Q, SIDIKE A, et al. Synergistic effect of hydration and carbonation of ladle furnace slag on cementitious substances[J]. Scientific Reports, 2022, 12(1): 14526.
|
[9] |
BOUABIDI Z B, EL-NAAS M H, CORTES D, et al. Steel-Making dust as a potential adsorbent for the removal of lead (Ⅱ) from an aqueous solution[J]. Chemical Engineering Journal, 2018, 334: 837-844.
|
[10] |
JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294.
|
[11] |
WAN Q, RAO F, SONG S X, et al. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization[J]. Journal of Materials Research and Technology, 2019, 8(6): 5728-5735.
|
[12] |
WANG L, GEDDES D A, WALKLEY B, et al. The role of zinc in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2020, 136: 106194.
|
[13] |
IZQUIERDO M, QUEROL X, DAVIDOVITS J, et al. Coal fly ash-slag-based geopolymers: microstructure and metal leaching[J]. Journal of Hazardous Materials, 2009, 166(1): 561-566.
|
[14] |
LI J, LI J X, WEI H, et al. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals[J]. Construction and Building Materials, 2021, 298: 123853.
|
[15] |
EL-ESWED B I, YOUSEF R I, ALSHAAER M, et al. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers[J]. International Journal of Mineral Processing, 2015, 137: 34-42.
|
[16] |
JI Z, PEI Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO3-4 and Cr2O2-7) in wastes-based geopolymer[J]. Journal of Hazardous Materials, 2020, 384: 121290.
|
[17] |
国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S].北京:中国标准化出版社.
|
[18] |
国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3—2007[S].北京:中国环境科学出版社,2007.
|
[19] |
环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法:HJ 557—2010[S]. 北京:中国环境科学出版社,2010.
|
[20] |
ALVAREZ-AYUSO E, QUEROL X, PLANA F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. 2008, 154(1/2/3): 175-183.
|
[21] |
王云燕, 柴立元, 王庆伟, 等. 重金属离子(Zn2+, Cu2+, Cd2+, Pb2+)-水系羟合配离子配位平衡研究[C]//2008年全国湿法冶金学术会议, 2008: 196-204.
|
[22] |
WANG Y, HAN F, MU J. Solidification/stabilization mechanism of Pb(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) in fly ash based geopolymers[J]. Construction and Building Materials, 2018, 160: 818-827.
|
[23] |
DERMATAS D, MENG X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394.
|
[24] |
CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403.
|
[25] |
WANG D, WANG Q. Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals[J]. Cement and Concrete Research, 2022, 161:106945.
|
[26] |
ZHENG L, WANG W, QIAO W, et al. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 642-648.
|
[27] |
THO-IN T, SATA V, BOONSERM K, et al. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash[J]. Journal of Cleaner Production, 2018, 172: 2892-2898.
|
[28] |
SWANEPOEL J C, STRYDOM C A. Utilisation of fly ash in a geopolymeric material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148.
|
[29] |
BOUAISSI A, LI L Y, ABDULLAH M M A B, et al. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete[J]. Construction and Building Materials, 2019, 210(20): 198-209.
|
[30] |
HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549.
|
[31] |
JI Z, PEI Y. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals[J]. Chemosphere, 2019, 225: 579-587.
|
[32] |
XINLIANG H, SHENBO Z, XIAOYING L, et al. FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013,(1):23-26.
|
[33] |
ANDINI S, CIOFFI R, COLANGELO F, et al. Coal fly ash as raw material for the manufacture of geopolymer-based products[J]. Waste Management, 2008, 28(2): 416-423.
|
[34] |
CHEN Y, CHEN F, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer[J]. Science of the Total Environment, 2022, 802: 149905.
|
[35] |
BARSBAY M, KAVAKLı P A, TILKI S, et al. Porous cellulosic adsorbent for the removal of Cd (Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) ions from aqueous media[J]. Radiation Physics and Chemistry, 2018, 142: 70-76.
|
[36] |
GUO X, ZHANG L, HUANG J, et al. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents[J]. Construction and Building Materials, 2017, 151: 394-404.
|
[37] |
WAN J, ZHANG F, HAN Z, et al. Adsorption of Cd2+ and Pb2+ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method[J]. Arabian Journal of Chemistry, 2021, 14(8): 103234.
|
[38] |
GUO B, PAN D A, LIU B, et al. Immobilization mechanism of Pb in fly ash-based geopolymer[J]. Construction and Building Materials, 2017, 134: 123-130.
|