Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015
Citation: LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015

MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS

doi: 10.13205/j.hjgc.202406015
  • Received Date: 2023-09-27
    Available Online: 2024-07-11
  • To improve the pollution of heavy metals and increase the utilization rate of solid waste, this study prepared geopolymers for the solidification of Zn2+, and Cd2+ under alkaline excitation conditions using ladle furnace slag (LFS) and fly ash (FA) as raw materials, and sodium hydroxide and water glass as alkaline activator. The effect of Zn2+ and Cd2+ doping on the strength of the cured body was investigated, and the immobilization effect of the geopolymer on Zn2+ and Cd2+ was evaluated by leaching experiments, and the immobilization mechanism was investigated by combining the characterization methods such as XRD, SEM-EDS, FT-IR, and XPS. The results showed that the LFS-FA-based geopolymer has good compatibility with Zn2+ and Cd2+, the compressive strength of the cured body containing 1.0% Cd2+ for 28 d could reach 40.62 MPa, and the curing rate of Zn2+ and Cd2+ in the hydration leaching experiments was over 99.6%; there was no new phase generated in the cured body after the incorporation of Zn2+ and Cd2+, and no chemical valence change occurred during the curing process. Metal ions can be effectively fixed in ladle furnace slag base polymer, mainly through physical encapsulation, and adsorption, while a small number of heavy metal ions exist in the curing body in the form of Si—O—M and Al—O—M (M=Zn, Cd) through chemical bonding.
  • [1]
    ZHAO S Z, WEN Q, ZHANG X Y, et al. Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge[J]. Ceramics International, 2021, 47(15): 21599-21609.
    [2]
    WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: state-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053.
    [3]
    JI Z H, PEI Y S. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 2019, 231: 256-267.
    [4]
    DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35: 429-441.
    [5]
    ZHANG Y J, HAN Z C, HE P Y, et al. Geopolymer-based catalysts for cost-effective environmental governance: a review based on source control and end-of-pipe treatment[J]. Journal of Cleaner Production, 2020, 263: 121556.
    [6]
    ZHANG X L, YAO A L, CHEN L. A review on the immobilization of heavy metals with geopolymers[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 173-177.
    [7]
    徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104-111.
    [8]
    YI Y R, MA W Q, SIDIKE A, et al. Synergistic effect of hydration and carbonation of ladle furnace slag on cementitious substances[J]. Scientific Reports, 2022, 12(1): 14526.
    [9]
    BOUABIDI Z B, EL-NAAS M H, CORTES D, et al. Steel-Making dust as a potential adsorbent for the removal of lead (Ⅱ) from an aqueous solution[J]. Chemical Engineering Journal, 2018, 334: 837-844.
    [10]
    JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294.
    [11]
    WAN Q, RAO F, SONG S X, et al. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization[J]. Journal of Materials Research and Technology, 2019, 8(6): 5728-5735.
    [12]
    WANG L, GEDDES D A, WALKLEY B, et al. The role of zinc in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2020, 136: 106194.
    [13]
    IZQUIERDO M, QUEROL X, DAVIDOVITS J, et al. Coal fly ash-slag-based geopolymers: microstructure and metal leaching[J]. Journal of Hazardous Materials, 2009, 166(1): 561-566.
    [14]
    LI J, LI J X, WEI H, et al. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals[J]. Construction and Building Materials, 2021, 298: 123853.
    [15]
    EL-ESWED B I, YOUSEF R I, ALSHAAER M, et al. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers[J]. International Journal of Mineral Processing, 2015, 137: 34-42.
    [16]
    JI Z, PEI Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO3-4 and Cr2O2-7) in wastes-based geopolymer[J]. Journal of Hazardous Materials, 2020, 384: 121290.
    [17]
    国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S].北京:中国标准化出版社.
    [18]
    国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3—2007[S].北京:中国环境科学出版社,2007.
    [19]
    环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法:HJ 557—2010[S]. 北京:中国环境科学出版社,2010.
    [20]
    ALVAREZ-AYUSO E, QUEROL X, PLANA F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. 2008, 154(1/2/3): 175-183.
    [21]
    王云燕, 柴立元, 王庆伟, 等. 重金属离子(Zn2+, Cu2+, Cd2+, Pb2+)-水系羟合配离子配位平衡研究[C]//2008年全国湿法冶金学术会议, 2008: 196-204.
    [22]
    WANG Y, HAN F, MU J. Solidification/stabilization mechanism of Pb(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) in fly ash based geopolymers[J]. Construction and Building Materials, 2018, 160: 818-827.
    [23]
    DERMATAS D, MENG X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394.
    [24]
    CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403.
    [25]
    WANG D, WANG Q. Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals[J]. Cement and Concrete Research, 2022, 161:106945.
    [26]
    ZHENG L, WANG W, QIAO W, et al. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 642-648.
    [27]
    THO-IN T, SATA V, BOONSERM K, et al. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash[J]. Journal of Cleaner Production, 2018, 172: 2892-2898.
    [28]
    SWANEPOEL J C, STRYDOM C A. Utilisation of fly ash in a geopolymeric material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148.
    [29]
    BOUAISSI A, LI L Y, ABDULLAH M M A B, et al. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete[J]. Construction and Building Materials, 2019, 210(20): 198-209.
    [30]
    HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549.
    [31]
    JI Z, PEI Y. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals[J]. Chemosphere, 2019, 225: 579-587.
    [32]
    XINLIANG H, SHENBO Z, XIAOYING L, et al. FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013,(1):23-26.
    [33]
    ANDINI S, CIOFFI R, COLANGELO F, et al. Coal fly ash as raw material for the manufacture of geopolymer-based products[J]. Waste Management, 2008, 28(2): 416-423.
    [34]
    CHEN Y, CHEN F, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer[J]. Science of the Total Environment, 2022, 802: 149905.
    [35]
    BARSBAY M, KAVAKLı P A, TILKI S, et al. Porous cellulosic adsorbent for the removal of Cd (Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) ions from aqueous media[J]. Radiation Physics and Chemistry, 2018, 142: 70-76.
    [36]
    GUO X, ZHANG L, HUANG J, et al. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents[J]. Construction and Building Materials, 2017, 151: 394-404.
    [37]
    WAN J, ZHANG F, HAN Z, et al. Adsorption of Cd2+ and Pb2+ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method[J]. Arabian Journal of Chemistry, 2021, 14(8): 103234.
    [38]
    GUO B, PAN D A, LIU B, et al. Immobilization mechanism of Pb in fly ash-based geopolymer[J]. Construction and Building Materials, 2017, 134: 123-130.
  • Relative Articles

    [1]WANG Yan, WANG Jie, XIE Zijian, LI Chunhua, YE Chun, MIAO Kexin, WEI Weiwei, ZHENG Ye. NON-POINT SOURCE POLLUTIONS IN TYPICAL RIVER BASINS IN HILLY AND MOUNTAINOUS AREAS AND PLAIN RIVER NETWORK AREA IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 33-40. doi: 10.13205/j.hjgc.202410005
    [2]ZHAO Chen, LI Chen, HU Qian, QI Fei, SUN Dezhi. REVIEW OF URBAN NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGIES AND OPTIMIZATION STRATEGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 11-20,75. doi: 10.13205/j.hjgc.202312002
    [3]DONG Yihua, ZHANG Xueying, ZHANG Xinyue, LI Liang. EVALUATION OF FARMLAND NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGY IN LIAOHE RIVER BASIN BASED ON AHP-FCE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 150-157. doi: 10.13205/j.hjgc.202312018
    [4]ZHANG Xiuhong, LI Renge, ZHAO Yueshuai, GAO Linting, NING Bo. ANALYSIS OF DIFFUSE POLLUTION CHARACTERISTICS IN AGRICULTURAL SPACE IN XI'AN BASED ON DPeRS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 142-149. doi: 10.13205/j.hjgc.202312017
    [5]MA Qiuxia, PANG Yong, ZHANG Pengcheng. FLUME EXPERIMENT STUDY ON MANNING COEFFICIENT,A KEY PARAMETER OF WATER ENVIRONMENT MODEL OF THE TAIHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 280-285. doi: 10.13205/j.hjgc.202206035
    [6]WANG Xuelian, LIU Bo, ZHAO Changsen, HUANG Zhenfang, PAN Xu. STUDY ON CALCULATION METHOD SYSTEM OF POLLUTANT LOAD FROM NON-POINT SOURCE INTO RIVERS IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 166-172,211. doi: 10.13205/j.hjgc.202203025
    [7]XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027
    [8]GAO Wei, CHEN Yan, YAN Changan, LIU Yong. SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 55-62. doi: 10.13205/j.hjgc.202206007
    [9]ZHANG Zhi-jie, WEN Fei, ZHANG Ya-qun, ZHOU Jing, FENG Ai-ping. CHARACTERISTICS AND SOURCE ANALYSIS OF NON-POINT SOURCE POLLUTION LOAD IN THE YELLOW RIVER BASIN ON A REGIONAL SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 81-88,142. doi: 10.13205/j.hjgc.202209011
    [10]YIN Jingchen, DING Han, LI Zeli, LI Xue, LI Guoguang, WANG Yuqiu. RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032
    [11]GU Xiao-dan, HUANG Yong, DING Yong-wei, HUANG Ji-hui. DIAGNOSIS AND ANALYSIS BASED ON MATHEMATICAL MODEL ON PROBLEMS IN SEWAGE TREATMENT PLANTS IN VILLAGES AND TOWNS WITH LOW LOAD OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 9-15. doi: 10.13205/j.hjgc.202105002
    [12]WU Jun, WANG Yi-yao, MA Yan. ANALYSIS ON RUNOFF COEFFICIENTS OF DIFFERENT IMPERVIOUS UNDERLYING SURFACES BASED ON A NOVEL RUNOFF COLLECTION METHOD FOR CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 47-52. doi: 10.13205/j.hjgc.202102008
    [13]GUO Min-peng, HOU Jing-ming, FU De-yu, KANG Yong-de, SHI Bao-shan, LI Chang-hao. HIGH PERFORMANCE NUMERICAL SIMULATION METHOD FOR NON-POINT SOURCE POLLUTION TRANSFER PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 160-166,173. doi: 10.13205/j.hjgc.202008027
    [14]ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
    [20]Xu Qingxian, Guan Xuefang, Qian Lei, Lin Bin, . RESEARCH ON NEW TECHNOLOGY INTERGRATION OF SWINE MANURE TREATMENT IN LARGE-SCALE SWINE FARM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 67-71. doi: 10.13205/j.hjgc.201501016
  • Cited by

    Periodical cited type(9)

    1. 邓刚. 福泉市道坪镇谷龙河治理项目工程设计分析. 江西建材. 2023(06): 134-136 .
    2. 王艳,焦燕,杨文柱,闫颖超,邬宏,灵灵,史月超. 内蒙古河套灌区农田非点源氮磷污染负荷估算. 中国环境科学. 2023(12): 6551-6560 .
    3. 杜鹃,王乐宜,周皓媛,王本梧,李国学,张宝莉. 农业面源污染时空分布及污染源解析——以安徽怀远县为例. 中国农业大学学报. 2021(02): 139-149 .
    4. 徐丹,韦群,王辉,丁鸣鸣,邵光成. 基于云模型的农业面源污染敏感性等级评价. 江苏农业科学. 2021(02): 180-186 .
    5. 罗娜,樊霆,郭彬,李凝玉,傅庆林,李华. 基于输出系数法的苕溪流域面源污染负荷估算. 合肥学院学报(综合版). 2021(02): 78-84 .
    6. 李政道,刘鸿雁,姜畅,顾小凤,涂宇. 基于输出系数模型的红枫湖保护区非点源污染负荷研究. 水土保持通报. 2020(02): 193-198+325 .
    7. 杨善莲,郑梦蕾,刘纯宇,马友华,王强. 农业面源污染模型研究进展. 环境监测管理与技术. 2020(03): 8-13 .
    8. 胡正,敖天其,李孟芮,胡富昶,刘凌雪. 改进的输出系数模型在缺资料地区面源综合评价. 灌溉排水学报. 2019(02): 108-114 .
    9. 黄国如,陈晓丽,任秀文. 北江飞来峡库区典型流域非点源污染特征分析及模拟. 水资源保护. 2019(04): 9-16+62 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 74.4 %META: 74.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 35.8 %其他: 35.8 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %北京: 4.2 %北京: 4.2 %南京: 5.0 %南京: 5.0 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %天津: 3.3 %天津: 3.3 %宣城: 1.7 %宣城: 1.7 %宿州: 0.8 %宿州: 0.8 %张家口: 2.5 %张家口: 2.5 %成都: 3.3 %成都: 3.3 %昆明: 0.8 %昆明: 0.8 %杭州: 2.5 %杭州: 2.5 %沈阳: 2.5 %沈阳: 2.5 %温州: 0.8 %温州: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 0.8 %漯河: 0.8 %澳门: 0.8 %澳门: 0.8 %芒廷维尤: 12.5 %芒廷维尤: 12.5 %芝加哥: 2.5 %芝加哥: 2.5 %蚌埠: 1.7 %蚌埠: 1.7 %衡阳: 0.8 %衡阳: 0.8 %衢州: 0.8 %衢州: 0.8 %运城: 3.3 %运城: 3.3 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 6.7 %重庆: 6.7 %鞍山: 0.8 %鞍山: 0.8 %其他上海东莞北京南京台州合肥天津宣城宿州张家口成都昆明杭州沈阳温州湖州漯河澳门芒廷维尤芝加哥蚌埠衡阳衢州运城邯郸郑州重庆鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(3) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return