Citation: | DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017 |
[1] |
HUANG M Y, ZHAO Q, DUAN R Y, et al. The effect of atrazine on intestinal histology, microbial community and short chain fatty acids in Pelophylax nigromaculatus tadpoles[J]. Environmental Pollution, 2021, 288: 117702.
|
[2] |
BAYATI M, NUMAAN M, KADHEM A, et al. Adsorption of atrazine by laser induced graphitic material: an efficient, scalable and green alternative for pollution abatement[J]. Journal of Environmental Chemical Engineering, 2020, 8: 104407.
|
[3] |
王万红, 王彦红, 王世成, 等. 辽北农田土壤除草剂和有机氯农药残留特征[J]. 土壤通报, 2010, 41(3): 716-722.
|
[4] |
CHANG J N, FANG W, CHEN L, et al. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: a comprehensive review[J]. Chemosphere, 2022, 307: 136006.
|
[5] |
宋佳, 潘妍, 王皙玮, 等. 除草剂阿特拉津在土壤中降解方式的研究现状[J]. 中国农学通报, 2022, 38(25): 90-95.
|
[6] |
LI X Y, JIE B R, LIN H D, et al. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): recent advances and prospects[J]. Journal of Environment Management, 2022, 308: 114664.
|
[7] |
肖鹏飞, 姜思佳. 活化过硫酸盐氧化法修复有机污染土壤的研究进展[J]. 化工进展, 2018, 37(12): 4862-4873.
|
[8] |
HOU X J, HUANG X P, AI Z H, et al. Ascorbic acid induced atrazine degradation[J]. Journal of Hazardous Materials, 2017, 327: 71-78.
|
[9] |
曹梦华, 涂书新, 张娥, 等. 抗坏血酸还原降解土壤中的阿特拉津[J]. 环境工程, 2019, 37(12): 207-211.
|
[10] |
CAO M H, HOU Y Z, ZHANG E, et al. Ascorbic acid induced activation of persulfate for pentachlorophenol degradation[J]. Chemosphere, 2019, 229: 200-205.
|
[11] |
郭梦卓, 徐佰青, 乔显亮, 等. 表面活性剂强化过硫酸钠氧化修复石油烃污染土壤[J]. 土壤, 2023, 55(1): 171-177.
|
[12] |
HOU X J, HUANG X P, LI M L, et al. Fenton oxidation of organic contaminants with aquifer sediment activated by ascorbic acid[J]. Chemical Engineering Journal, 2018, 348: 255-262.
|
[13] |
SUN H W, XIE G H, HE D, et al. Ascorbic acid promoted magnetite Fenton degradation of alachlor: mechanistic insights and kinetic modeling[J]. Applied Catalysis B: Environmental, 2020, 267: 118383.
|
[14] |
黄凤莲, 邹璇, 陈灿, 等. 亚铁活化次氯酸钠降解土壤中阿特拉津[J]. 环境工程, 2021, 39(2): 160-165
, 172.
|
[15] |
FANG G D, CHEN X R, WU W H, et al. Mechanisms of interaction between persulfate and soil constituents: activation, free radical formation, conversion, and identification[J]. Environmental Science and Technology, 2018, 52: 14352-14361.
|
[16] |
CAO M H, TU S X, XIONG S L, et al. EDDS enhanced PCB degradation and heavy metals stabilization in co-contaminated soils by ZVI under aerobic condition[J]. Journal of Hazardous Materials, 2018, 358: 265-272.
|
[17] |
WEI X, GAO N, LI C, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J]. Chemical Engineering Journal, 2016, 285: 660-670.
|
[18] |
LI Y, WANG F, REN X Y, et al. Peroxymonosulfate activation for effective atrazine degradation over a 3D cobalt-MOF: performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2023, 11: 109116.
|
[19] |
YANG J, LI X K, WEI M F, et al. Base-activated persulfate strategy for ceramic membrane cleaning after treatment of natural surface water[J]. Chemical Engineering Research and Design, 2023, 194: 245-255.
|
[20] |
GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47: 5431-5438.
|
[21] |
ZHOU S Q, YU Y H, SUN J L, et al. Oxidation of microcystin-LR by copper (Ⅱ) coupled with ascorbic acid: kinetic modeling towards generation of H2O2[J]. Chemical Engineering Journal, 2018, 333: 443-450.
|
[22] |
WANG Q, LU X, CAO Y, et al. Degradation of Bisphenol S by heat activated persulfate: kinetics study, transformation pathways and influences of co-existing chemicals[J]. Chemical Engineering Journal, 2017, 328: 236-245.
|
[23] |
PENG J L, LU X H, JIANG X, et al. Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 354: 740-752.
|
[24] |
FANG G D, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs[J]. Environment Science and Technology, 2013, 47: 4605-4611.
|
[25] |
WU S H, HE H J, LI X, et al. Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms[J]. Chemical Engineering Journal, 2018, 341: 126-136.
|
[26] |
LIU W, AI Z H, CAO M H, et al. Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core-shell nanowires[J]. Applied Catalysis B: Environment, 2014, 150/151: 1-11.
|
[27] |
AN Y J, LI X W, LIU Z H, et al. Constant oxidation of atrazine in Fe(Ⅲ)/PDS system by enhancing Fe(Ⅲ)/Fe(Ⅱ) cycle with quinones: reaction mechanism, degradation pathway and DFT calculation[J]. Chemosphere, 2023, 317: 137883.
|
[28] |
QU J H, LIU R X, BI X W, et al. Remediation of atrazine contaminated soil by microwave activated persulfate system: performance, mechanism and DFT calculation[J]. Journal of Cleaner Production, 2023, 399: 136546.
|
[1] | XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF THE ENVIRONMENTAL BEHAVIORS AND TOXICITY EFFECT OF NANOCERIA IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 7-13,75. doi: 10.13205/j.hjgc.202109002 |
[2] | MA Yan, WANG Tong, ZHOU Sheng-kun, ZHANG Mei-juan, ZHANG Ya-ru, ZHANG Ze-ren, WU Cui-ping. STUDY ON ADSORPTION BEHAVIOR OF ANILINE ON ZONAL SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 191-196,156. doi: 10.13205/j.hjgc.202110027 |
[3] | HE Liao, SANG Yi-min, YU Wang, WANG Fei-yu, LU Tao-tao, TENG Zhi-yuan, LIANG Zeng-yin, YU Tao. RESEARCH PROGRESS OF PREPARATION OF CHARRING MATERIALS AND THEIR APPLICATION IN SOIL THERMAL CHARRING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 179-187. doi: 10.13205/j.hjgc.202108025 |
[4] | LIU Wei-zong, WANG Wen-hai, LI Jun-qi, JIA Gao-feng, WANG Hao-ran. STUDY ON INFILTRATION CHARACTERISTICS OF SOIL UNDER NATURAL DRYING PROCESS CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 72-76. doi: 10.13205/j.hjgc.202004013 |
[11] | Liu Guo, Wu Xi Li Jun, . RESEARCH ON ADSORPTION OF Cd( Ⅱ) BY EDTA INTERCALATED HYDROTALCITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 41-45?. |
1. | 杨光,杨志强,石磊,郭俊祥,王飞,代鑫. 钢渣资源化利用与实践. 冶金能源. 2024(05): 37-40+59 . ![]() | |
2. | 毕敏娜. 钢铁渣处理与综合利用技术的研究概况与标准化进展. 工程建设标准化. 2024(09): 95-100 . ![]() | |
3. | 殷素红,曾丽莎,梁康,刘上月,吕子洋,吕奇龙. 不同处理工艺下钢渣的铁相赋存状态及其对磁选粉收得率和尾渣胶凝活性的影响. 华南理工大学学报(自然科学版). 2024(10): 76-86 . ![]() | |
4. | 郝以党,王会刚,吴龙,邱桂博,岳昌盛,彭犇. 双碳目标下钢渣处理技术综述及展望. 矿产综合利用. 2024(06): 67-73 . ![]() | |
5. | 王会刚,吴龙,郝以党,彭犇,岳昌盛,杨增奎. 我国钢渣热闷处理技术及装备化进展. 河北冶金. 2022(09): 6-9+14 . ![]() | |
6. | 吴跃东,彭犇,吴龙,闾文,张国华. 国内外钢渣处理与资源化利用技术发展现状综述. 环境工程. 2021(01): 161-165 . ![]() | |
7. | 罗晓,张峻搏,何磊,杨雪晶,吕鹏翼. 钢渣对水体中磷的去除性能及机制解析. 环境科学. 2021(05): 2324-2333 . ![]() | |
8. | 陈虎,陶钰禧,周朝刚,赵定国,王书桓,艾立群. 转炉渣热闷法直接上线工艺处理概况及应用. 有色金属科学与工程. 2021(06): 17-25 . ![]() | |
9. | 王会刚,吴龙,彭犇,岳昌盛,张梅,郭敏. 中外钢渣一次处理技术特点及进展. 科学技术与工程. 2020(13): 5025-5031 . ![]() | |
10. | 佟帅,李晨晓,王书桓,赵定国,薛月凯,刘吉猛. 钢渣处理工艺及综合利用分析. 冶金能源. 2020(06): 3-7 . ![]() | |
11. | 张志刚. 钢渣处理设施结构优化浅析. 山西建筑. 2019(10): 162-164 . ![]() | |
12. | 尹星,安莹,包勇超,周振. 钢厂废水深度处理工程设计. 环境工程. 2018(05): 58-60+67 . ![]() |