Citation: | WANG Jianhui, LIAO Wanshan, LI Huimin, FENG Dong, GUO Zhiwei, Mohamed S. Mahmoud, ZHANG Bing, GAO Xu, SHEN Yu, CHEN Youpeng. A DATA ENHANCEMENT METHOD FOR SUPPORTING INTELLIGENT MANAGEMENT OF WWTPs UNDER DATA DEFICIENCY CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 153-159. doi: 10.13205/j.hjgc.202406018 |
[1] |
ZHANG J, SHAO Y, WANG H, et al. Current operation state of wastewater treatment plants in urban China[J]. Environ Res, 2021, 195: 110843.
|
[2] |
陈治池,何强,蔡然,等.碳中和趋势下数学模拟在污水处理系统中的发展与综合应用[J].中国环境科学, 2022, 42(6): 2587-2602.
|
[3] |
ZHANG Y, THORBURN P J. Handling missing data in near real-time environmental monitoring: a system and a review of selected methods[J]. Future Gener Comp Sy, 2022, 128: 63-72.
|
[4] |
XU R Z, CAO J S, WU Y, et al. An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process[J]. Water Research, 2020, 184, 116103.
|
[5] |
高嵩,邱勇,孟凡琳,等.污水处理工艺数据分析技术的现状与趋势[J].环境工程, 2022, 40(6): 194-203.
|
[6] |
XU R Z, CAO J S, FANG F, et al. Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign[J]. Science of the Total Environment, 2021, 785, 147356.
|
[7] |
WANG K J, WANG P S, NGUYEN H P. A data-driven optimization model for coagulant dosage decision in industrial wastewater treatment[J]. Computers Chemical Engineering, 2021, 152: 107383.
|
[8] |
EL-RAWY M, ABD-ELLAH M K, FATHI H, et al. Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques[J]. Journal of Water Process Engineering, 2021, 44, 102380.
|
[9] |
YANG Y, KIM K R, KOU R, et al. Prediction of effluent quality in a wastewater treatment plant by dynamic neural network modeling[J]. Process Safety and Environmental Protection, 2022, 158: 515-524.
|
[10] |
KANG H, YANG S, HUANG J, et al. Time series prediction of wastewater flow rate by bidirectional LSTM deep learning[J]. Int J Control Autom, 2020, 18(12): 3023-3030.
|
[11] |
MANSOUR-BAHMANI A, HAGHIABI A H, SHAMSI Z, et al. Predictive modeling the discharge of urban wastewater using artificial intelligent models (case study: Kerman city)[J]. Modeling Earth Systems and Environment, 2021, 7(3): 1917-1925.
|
[12] |
YAN W W, XU R C, WANG K D, et al. Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant[J]. Industrial Engineering Chemistry Research, 2020, 59(10): 4589-4601.
|
[13] |
HARROU F, CHENG T, SUN Y, et al. A data-driven soft sensor to forecast energy consumption in wastewater treatment plants: a case study[J]. IEEE Sensors Journal, 2021, 21(4): 4908-4917.
|
[14] |
WANG J H, ZHAO X L, GUO Z W, et al. A full-view management method based on artificial neural networks for energy and material-savings in wastewater treatment plants[J]. Environmental Research, 2022, 211: 113054.
|
[15] |
YANG S S, YU X L, DING M Q, et al. Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network[J]. Water Research, 2021, 189: 116576.
|
[16] |
NEWHART K B, HOLLOWAY R W, HERING A S, et al. Data-driven performance analyses of wastewater treatment plants: a review[J]. Water Research, 2019, 157: 498-513.
|
[17] |
ZHANG J B, WANG H C, SHAO Y T, et al. Analysis on common problems of the wastewater treatment industry in urban China[J]. Chemosphere, 2022, 291: 132875.
|
[18] |
CHEN Z, XU H, JIANG P, et al. A transfer learning-based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system[J]. J Hydrol, 2021, 602: 126573.
|
[19] |
NGOUNA R H, RATOLOJANAHARY R, MEDJAHER K, et al. A data-driven method for detecting and diagnosing causes of water quality contamination in a dataset with a high rate of missing values[J]. Engineering Applications of Artificial Inteligence, 2020, 95: 103822.
|
[20] |
BERTANZA G, BOIOCCHI R, PEDRAZZANI R. Improving the quality of wastewater treatment plant monitoring by adopting proper sampling strategies and data processing criteria[J]. Science of the Total Environment, 2022, 806: 150724.
|
[21] |
FAN Y, GUO Z, WANG J, et al. Online learning-empowered smart management for A2O process in sewage treatment processes[J]. Environmental Research, 2022, 210: 113015.
|
[22] |
BA-ALAWI A H, LOY-BENITEZ J, KIM S, et al. Missing data imputation and sensor self-validation towards a sustainable operation of wastewater treatment plants via deep variational residual autoencoders[J]. Chemosphere, 2022, 288: 132647.
|
[23] |
KIM J, SEO D, JANG M, et al. Augmentation of limited input data using an artificial neural network method to improve the accuracy of water quality modeling in a large lake[J]. J Hydrol, 2021, 602: 126817.
|
[24] |
ZHAN C J, DAI Z X, SAMPER J, et al. An integrated inversion framework for heterogeneous aquifer structure identification with single-sample generative adversarial network[J]. J Hydrol, 2022, 610: 127844.
|
[25] |
ZHANG K, CHEN Q, CHEN J, et al. A multi-module generative adversarial network augmented with adaptive decoupling strategy for intelligent fault diagnosis of machines with small sample[J]. Knowl-Based Syst, 2022, 239: 107980.
|
[26] |
PEI L L, SUN Z Y, XIAO L Y, et al. Virtual generation of pavement crack images based on improved deep convolutional generative adversarial network[J]. Engineering Applications of Artificial Inteligence, 2021, 104: 104376.
|
[27] |
ZHOU R, JIANG C, XU Q Y. A survey on generative adversarial network-based text-to-image synthesis[J]. Neurocomputing, 2021, 451: 316-336.
|
[28] |
WANG W J, WANG H Y, YANG S K, et al. Resolution enhancement in microscopic imaging based on generative adversarial network with unpaired data[J]. Optics Communications, 2022, 503: 127454.
|
[29] |
LV J, DU L, LIN H, et al. Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning[J]. Bioresource Technology, 2024,393:130008.
|
[30] |
KOFINAS D T, SPYROPOULOU A, LASPIDOU C S. A methodology for synthetic household water consumption data generation[J]. Environmental Modelling & Software, 2018, 100: 48-66.
|
[31] |
ZHOU S, SONG W. Deep learning-based roadway crack classification using laser-scanned range images: a comparative study on hyperparameter selection[J]. Automation in Construction, 2020,114:103171.
|
[32] |
马润,蒋全. 改进数据增强方法在轴承故障诊断中的应用[J]. 软件导刊, 2022, 21 (6): 135-140.
|
[33] |
ADDISSON S, LUIS V, GONZALO S. Generative adversarial networks and markov random fields for oversampling very small training sets[J]. Expert Systems with Applications, 2021, 163: 113819.
|