Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MI Yonglan, ZHANG Wenjie. EXPERIMENTAL STUDY ON EFFECT OF SOIL COLLOIDS ON MOBILITY OF NANOPLASTICS UNDER DIFFERENT HYDROCHEMICAL CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 98-105. doi: 10.13205/j.hjgc.202407010
Citation: MI Yonglan, ZHANG Wenjie. EXPERIMENTAL STUDY ON EFFECT OF SOIL COLLOIDS ON MOBILITY OF NANOPLASTICS UNDER DIFFERENT HYDROCHEMICAL CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 98-105. doi: 10.13205/j.hjgc.202407010

EXPERIMENTAL STUDY ON EFFECT OF SOIL COLLOIDS ON MOBILITY OF NANOPLASTICS UNDER DIFFERENT HYDROCHEMICAL CONDITIONS

doi: 10.13205/j.hjgc.202407010
  • Received Date: 2023-10-17
    Available Online: 2024-12-02
  • To investigate the effect of soil colloids on the migration of nanoplastics under different hydrochemical conditions, Polystyrene nanoplastics (PSNPs) with a particle size of 100 nm were selected, and soil colloids were extracted by siphon method. The mechanism of PSNPs migration in saturated porous media was revealed by zeta potential and DLVO theory. The results showed that the migration of PSNPs was influenced by the pH and the ionic strength (IS). The mobility of PSNP increased with the increase of pH and decreased with the increase of IS. Variations in pH and IS altered the surface charges of both PSNPs and porous media thus affecting the interaction energy. As pH increased from 4.0 to 9.0 (10 mmol/L NaCl, bentonite colloid), the peak DLVO barrier increased from 45.11 kT to 61.89 kT, and the zeta potential was significantly reduced. The migration capacity of the PSNPs was improved, resulting in a rise in the outflow rate from 42.80% to 62.21%. Both bentonite colloids and illite colloids accelerated the migration of PSNPs in saturated porous media, whereas the effect of bentonite colloids on the mobility of PSNPs was more significant. The results provide valuable insights into the migration of PSNPs in subsurface soil and water environments, which is of great importance for the prevention of plastic pollution.
  • [1]
    王佳佳, 赵娜娜, 李金惠. 中国海洋微塑料污染现状与防治建议[J]. 中国环境科学, 2019, 39(7):3056-3063.
    [2]
    SILVA A B, BASTOS A S, JUSTINO C I, et al. Microplastics in the environment: challenges in analytical chemistry: a review[J]. Analytica Chimica Acta, 2018, 1017:1-19.
    [3]
    BRANDTS I, TELES M, GONÇALVES A, et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine[J]. Science of the Total Environment, 2018, 643:775-784.
    [4]
    PITT J A, TREVISAN R, MASSARSKY A, et al. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene[J]. Science of the Total Environment, 2018, 643:324-334.
    [5]
    HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141.
    [6]
    BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612:422-435.
    [7]
    杨光蓉, 陈历睿, 林敦梅. 土壤微塑料污染现状, 来源, 环境命运及生态效应[J]. 中国环境科学, 2021, 41(1):353-365.
    [8]
    ZHAO G, WU Y. Study on transport mechanism of microplastics in vertically fixed porous media[J]. Advances in Environmental Protection, 2020, 10(3):382-387.
    [9]
    KUMAR M, CHEN H, SARSAIYA S, et al. Current research trends on micro-and nano-plastics as an emerging threat to global environment: a review[J]. Journal of Hazardous Materials, 2021, 409:124967.
    [10]
    RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1):1-6.
    [11]
    张姗姗, 王洋清, 赵由才, 等. 垃圾填埋场中的塑料-微塑料-纳米塑料环境行为研究前瞻[J]. 环境卫生工程, 2021, 29(3):58-68.
    [12]
    SONG Z, YANG X, CHEN F, et al. Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization[J]. Science of the Total Environment, 2019, 669:120-128.
    [13]
    薛传成, 王艳, 刘干斌, 等. 温度和pH对多孔介质中悬浮颗粒渗透迁移的影响[J]. 岩土工程学报, 2019, 41(11):2112-2119.
    [14]
    LU T, GILFEDDER B S, PENG H, et al. Relevance of iron oxyhydroxide and pore water chemistry on the mobility of nanoplastic particles in water-saturated porous media environments[J]. Water, Air, & Soil Pollution, 2021, 232(5):1-13.
    [15]
    WU X, LYU X, LI Z, et al. Transport of polystyrene nanoplastics in natural soils: effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment, 2020, 707:136065.
    [16]
    BAI B, NIE Q, ZHANG Y, et al. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage[J]. Journal of Hydrology, 2021, 597:125771.
    [17]
    蔡叶青, 陈永贵, 叶为民, 等. 处置库近场膨润土胶体产生及稳定性研究进展[J]. 岩土工程学报, 2020, 42(11):1996-2005.
    [18]
    张鹏远, 白冰, 蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. 岩土力学, 2016, 37(5):1307-1316.
    [19]
    张文杰, 李俊涛. 优先流作用下的胶体-重金属共迁移试验研究[J]. 岩土工程学报, 2020, 42(1):46-52.
    [20]
    SAIERS J E, HORNBERGER G M. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resources Research, 1996, 32(1):33-41.
    [21]
    GROLIMUND D, BORKOVEC M, BARMETTLER K, et al. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study[J]. Environmental Science & Technology, 1996, 30(10):3118-3123.
    [22]
    LU T, GILFEDDER B S, PENG H, et al. Effects of clay minerals on the transport of nanoplastics through water-saturated porous media[J]. Science of the Total Environment, 2021, 796:148982.
    [23]
    HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Transactions of the Faraday Society, 1966, 62:1638-1651.
    [24]
    GREGORY J. Approximate expressions for retarded van der Waals interaction[J]. Journal of Colloid and Interface Science, 1981, 83(1):138-145.
    [25]
    ELIMELECH M, O'MELIA C R. Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers[J]. Langmuir, 1990, 6(6):1153-1163.
    [26]
    RUSSEL W B, RUSSEL W, SAVILLE D A, et al. Colloidal dispersions[M]. Cambridge: Cambridge University Press, 1991.
    [27]
    ZHANG W, TANG X, WEISBROD N, et al. A review of colloid transport in fractured rocks[J]. Journal of Mountain Science, 2012, 9:770-787.
    [28]
    ZHANG Y, LUO Y, GUO X, et al. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase[J]. Water Research, 2020, 178:115861.
    [29]
    TOMBACZ E, SZEKERES M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes[J]. Applied Clay Science, 2004, 27(1/2):75-94.
    [30]
    ZHAO Y, GU X, GAO S, et al. Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects[J]. Geoderma, 2012, 183:12-18.
  • Relative Articles

    [1]HUANG Xi, ZHANG Qiaoqiao, YAN Jin, MA Jingjing, LUO Zejiao. POLLUTION SITUATION AND RISK ASSESSMENT OF MICROPLASTICS IN AGRICULTURAL SOIL IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 136-145. doi: 10.13205/j.hjgc.202406016
    [2]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [3]CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022
    [4]LIU Chao, ZHANG Xiao-ran, LIU Jun-feng, ZHANG Zi-yang, GONG Yong-wei, LI Hai-yan. RELEASE OF MICROPLASTICS FROM PLASTIC PRODUCTS AND THEIR ENVIRONMENTAL TRANSPORT BEHAVIORS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 205-217. doi: 10.13205/j.hjgc.202205030
    [5]LUO Xiao-feng, ZHU Ling-long, XU Guo-liang, YU Shi-qin, OU Shi-ting, CHEN Xiao-hua. TOXICITY OF SUBMICROPLASTIC ON SOIL COLLEMBOLANS FOLSOMIA CANDIDA BY FOOD EXPOSURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 187-193. doi: 10.13205/j.hjgc.202101029
    [6]YANG Yang, HE Wen-qing. RESEARCH STATUS AND PROGRESS OF MICROPLASTIC POLLUTION IN FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 156-164,15. doi: 10.13205/j.hjgc.202105022
    [7]FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017
    [8]DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027
    [9]LIANG Shuai, HAN Bing, NIU Ze-pu, ZHAO Ling-dong, GU Jin-yi, WANG Wan-wan, ZHANG Li-feng, ZHANG Yang. SOURCE, MIGRATION AND ECOTOXICOLOGICAL EFFECTS OF MICRO-PLASTICS IN FRESHWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 1-9,70. doi: 10.13205/j.hjgc.202112001
    [10]LIU Si-xuan, LI Yi-ping, ZHU Ya, TANG Chun-yan, WEI Yao, LI Rong-hui, CHEN Gang. MIGRATION OF IRON, MANGANESE AND SULFIDE IN BLACK RESERVOIR WATER IN SOUTH CHINA: A CASE STUDY OF TIANBAO RESERVOIR, NANNING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 78-84. doi: 10.13205/j.hjgc.202110011
    [11]LIU Bing-yi, LUO Min, SHAO Yang, ZHENG Nan, XU Dian-dou, MA Ling-ling, LIU Zhi-ming. A REVIEW OF THE INFLUENCE FACTORS OF RADIONUCLIDES MIGRATION IN SOIL RHIZOSPHERE MICROREGIONS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 227-233. doi: 10.13205/j.hjgc.202112034
    [12]HOU Jun-hua, TAN Wen-bing, YU Hong, DANG Qiu-ling, LI Ren-fei, XI Bei-dou. MICROPLASTICS IN SOIL ECOSYSTEM: A REVIEW ON SOURCES, FATE, AND ECOLOGICAL IMPACT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 16-27,15. doi: 10.13205/j.hjgc.202002002
    [13]CHEN Mei-feng, LI Xin-li, YANG Pei-lin, LUO Qian, QIN Fan-xin. STABILIZATION OF AS CONTAMINATED SOILS BY MODIFIED NANO-TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 222-227. doi: 10.13205/j.hjgc.202010035
    [14]ZHU Tao, WANG Run-ze, WANG Zong-zhou, ZHANG Dan, YANG Sheng-ke, ZHOU Min, WANG Ya-qiong. BEHAVIORAL CHARACTERISTICS OF NITROGEN IN THE ZAOHE AND WEIHE RIVER INTERSECTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 6-13,22. doi: 10.13205/j.hjgc.202009002
    [15]LIU Xue, LI Xiao-yan, CHEN Yu-jie, SANG Wei-xuan, CHEN Rong, XIAO Hui. ANALYSIS ON ADSORPTION PROPERTIES OF U(Ⅵ) BY DIFFERENT SOIL COMPONENTS IN PADDY SOIL AROUND A URANIUM TAILINGS POND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 245-251. doi: 10.13205/j.hjgc.202006040
    [16]WANG Wen-xuan, CHEN Xiao-tong, ZHANG Yu-chen, WU Guang-yi, LIAO Yu-liang, YANG Jin-yan. SIMULATION EXPERIMENT OF TRANSPORT AND TRANSFORMATION OF WATER-SOLUBLE Cr(Ⅵ) IN SOIL UNDER THE ACTION OF MICROORGANISM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 40-46. doi: 10.13205/j.hjgc.202006007
    [18]Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6.
  • Cited by

    Periodical cited type(2)

    1. 李璐,张玥,邵鸿渝,倪敏,黄勇,潘杨. 侧流与主流磷回收工艺对比及调控因子分析. 中国环境科学. 2024(01): 103-113 .
    2. 高鹏飞,丁燕燕,黄博,刘缘,潘杨,黄勇. 序批式生物膜法对污水中污染物的去除性能及其对磷的富集性能. 环境工程学报. 2024(08): 2202-2209 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.2 %FULLTEXT: 23.2 %META: 76.8 %META: 76.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 64.6 %其他: 64.6 %北京: 1.2 %北京: 1.2 %大庆: 1.2 %大庆: 1.2 %天津: 2.4 %天津: 2.4 %张家口: 3.7 %张家口: 3.7 %扬州: 2.4 %扬州: 2.4 %杭州: 1.2 %杭州: 1.2 %泰安: 1.2 %泰安: 1.2 %漯河: 3.7 %漯河: 3.7 %芒廷维尤: 12.2 %芒廷维尤: 12.2 %芝加哥: 1.2 %芝加哥: 1.2 %衡阳: 1.2 %衡阳: 1.2 %西安: 1.2 %西安: 1.2 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.2 %运城: 1.2 %其他北京大庆天津张家口扬州杭州泰安漯河芒廷维尤芝加哥衡阳西安贵阳运城

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (63) PDF downloads(0) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return