Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
Citation: LI Xiang, WANG Qian, LI Cong, LI Yi, CUI Shuyang. EFFECT OF VERTICAL BARRIERS ON HYDRODYNAMIC CONTROL OF CONTAMINATED GROUNDWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 129-134. doi: 10.13205/j.hjgc.202407014

EFFECT OF VERTICAL BARRIERS ON HYDRODYNAMIC CONTROL OF CONTAMINATED GROUNDWATER

doi: 10.13205/j.hjgc.202407014
  • Received Date: 2023-11-14
    Available Online: 2024-12-02
  • To determine the influence of vertical barriers on the hydrodynamic control of contaminated groundwater and guide the design and construction of hydrodynamic interception technology, a hydrodynamic interception technology test device was established, and tests were carried out under different working conditions. Combined with the simulation results of GMS, it was found that the existence of an upstream open vertical barrier could form a large range of pollutant capture areas near the downstream pollution source, thus delaying the diffusion of pollutants and reducing the peak concentration of pollutants at the downstream monitoring point. The longer the arc length of the upstream open vertical barrier, the better the interception effect. The interception effect of the upstream pumping scheme was directly related to the pumped flow. The higher the pumped flow, the larger the range of the captured area formed in the middle reach, the slower the diffusion of pollutants, and the lower the peak concentration. The combination of vertical barriers and upstream pumping wells could very effectively reduce the pumping flow necessary to control the diffusion of pollutants, thus greatly reducing the implementation cost of the upstream pumping scheme.
  • [1]
    吕淑清. 土壤—膨润土泥浆墙对污染物的阻截性能及机理研究[D]. 长春:吉林大学, 2015.
    [2]
    PADHYE L P, SRIVASTAVA P, JASEMIZAD T, et al. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater[J]. Journal of Hazardous Materials, 2023, 455: 131575.
    [3]
    谢云峰, 曹云者, 张大定, 等. 污染场地环境风险的工程控制技术及其应用[J]. 环境工程技术学报, 2012, 2(1): 51-59.
    [4]
    KUI H, XIANGPING L. Application status of vertical barrier technology in site contamination remediation[J]. IOP Conference Series: Earth and Environmental Science, 2019, 242(5): 052029.
    [5]
    CHRIST J A, GOLTZ M N. Containment of groundwater contamination plumes: minimizing drawdown by aligning capture wells parallel to regional flow[J]. Journal of Hydrology, 2004, 286(1): 52-68.
    [6]
    EVANS J C. Vertical cutoff walls[M]//DANIEL D E. Geotechnical Practice for Waste Disposal. Boston, MA: Springer US, 1993: 430-454.
    [7]
    钱学德, 朱伟, 王升位. 填埋场和污染场地防污屏障设计与施工(上)[M]. 北京: 科学出版社, 2017.
    [8]
    CAO B, XU J, WANG F, et al. Vertical barriers for land contamination containment: a review[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12643.
    [9]
    PEDRETTI D, MASETTI M, BERETTA G P. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers[J]. Journal of Hydrology, 2017, 553: 805-815.
    [10]
    ANDERSON E I, ELIZABETH M. The effects of vertical barrier walls on the hydraulic control of contaminated groundwater[J]. Advances in Water Resources, 2006, 29(1): 89-98.
    [11]
    周琪, 左昌余. 分光光度法在水质在线监测领域应用进展[J]. 现代仪器与医疗, 2013, 19(3): 21-24.
    [12]
    范海啸. 水中高锰酸钾指数的测定方案设计[J]. 盐科学与化工, 2020, 49(7): 9-13.
    [13]
    崔树阳, 王乾, 白正伟, 等. 某油库地下水石油烃污染物运移规律及水动力阻截技术模拟[J]. 安全与环境工程, 2023, 30(2): 216-222

    , 32.
    [14]
    刘国, 李妍颖, 范全忠, 等. 基于Visual MODFLOW的垃圾填埋场阻隔墙设计及效果评估[J]. 环境工程, 2020, 38(6): 137-142

    , 80.
    [15]
    ELIZABETH M, ANDERSON E I. A local model for analysis of pump and treat systems with vertical barrier walls[J]. Advances in Water Resources, 2008, 31(3): 473-483.
  • Relative Articles

    [1]LIU Shentan, WANG Zuo. AN ECO-TYPE MICROBIAL FUEL CELL FOR SIMULTANEOUS ELECTRICITY GENERATION AND NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 116-122,149. doi: 10.13205/j.hjgc.202312014
    [2]WANG Yiming, DING Lu, XU Jiaying, SHI Lei, LIU Yifan, LIANG Wenbo, YANG Xiaoli. CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 54-60. doi: 10.13205/j.hjgc.202211008
    [3]LI Yong, YUAN Hui-zhou, KE Shui-zhou, ZHU Liang, LI Zhan-peng. EFFECTS OF MICROBIAL CARRIERS ON PERFORMANCE AND MICROBIAL COMMUNITY STRUCTURE OF MBBR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 100-106. doi: 10.13205/j.hjgc.202112015
    [4]WANG Feng, DONG Wen-yi, WANG Hong-jie, LIU Tong-zhou, MAO Yan-qing, WU Hua-cai. EFFECTIVENESS OF IN SITU TREATMENT OF BLACK-ODOR RIVER SEDIMENT BY CaO2[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 64-69,123. doi: 10.13205/j.hjgc.202012012
    [5]CHEN Jin-huan, TANG Jia-wen, WANG Kai-nan, ZHANG Qiu-zhuo. APPLICATION OF AQUATIC PLANTS COMMUNITY BUILDING TECHNOLOGY IN EUTROPHIC WATER RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 105-112,135. doi: 10.13205/j.hjgc.202008018
    [16]Tu Weiling, Hu Zhanbo, Liang Yicong, Lu Hui, Liu Kaihua, Jiang Zhe. EXPERIMENTAL STUDY ON REMEDIATION OF SEDIMENTS IN URBAN BLACK-ODOROUS RIVERS BY DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 5-9. doi: 10.13205/j.hjgc.201510002
    [17]Xu Wei Li Yong Tang Chuanxiang Chen Xiangbin Li Huijuan Xiong Daowen Yu Shaoqin, . EXPERIMENT OF A NEW AERATION SYSTEM USED IN MBR INTEGRATION EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 10-14. doi: 10.13205/j.hjgc.201510003
    [18]Cheng Nianliang, Li Yunting, Zhang Dawei, Sun Ruiwen, Dong Xin, Cheng Bingfen, Li Hongxia. ANALYSIS ON THE SPATIAL AND TEMPORAL DISTRIBUTION OF PM2. 5 IN BEIJING IN 2013[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 43-46. doi: 10.13205/j.hjgc.201510010
    [19]Chen Zefang, Yang Xunan, Wu Qunhe. COMPARISON OF OIL SORPTION CAPACITY BETWEEN HYDROPHYTE AND TRADITIONAL VEGETABLE SORBENTS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 50-55. doi: 10.13205/j.hjgc.201503010
    [20]Wang Yayan, Zhang Jiangang, Ni Pengping, Li Mengying, Yu Yingjie, Zhang Lingling, Xu Yuliang, Cai Cong, Xie Liqun. APPLICATION RESEARCHES ON IN-SITU ECOLOGICAL RESTORATION TECHNOLOGY IN POLLUTED URBAN RIVER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 11-16. doi: 10.13205/j.hjgc.201503003
  • Cited by

    Periodical cited type(10)

    1. 金芷琪,王力. 浅析曝气在市政环境工程水处理中的应用. 皮革制作与环保科技. 2024(01): 113-115 .
    2. 杨朝彬. 城市河道水质多级净化技术研究. 中国农村水利水电. 2024(04): 83-87 .
    3. 陈毛华,杨永学,刘坤. 芡实对沿淮富营养化水体的净化效果研究. 中国农学通报. 2024(22): 66-71 .
    4. 李戈,高璇. 景观格局对河流黑臭水体生态修复的影响研究. 环境科学与管理. 2024(09): 83-86 .
    5. 张效晗,冯哲源,王建平,马林建,柳伟,耿汉生. 膨润土协同水泥固化淤泥的力学特性及微观研究. 防护工程. 2024(05): 24-30 .
    6. 沈春颖,张宗亮,王铭明,王兰艳,杨卷,许广,蔡佳时. 异龙湖流域水源污染调查及原位降氮关键技术研究. 水利水电科技进展. 2024(06): 71-78 .
    7. 李振华. 城市雨水高效截污净化试验研究. 环境工程. 2024(12): 108-115 . 本站查看
    8. 袁欢庆,张建恒,曹晓丽,刘金林,李爽,赵爽,何培民,何文辉. 黑臭水体治理方法的研究进展及对策. 环境工程. 2023(S2): 1-5 . 本站查看
    9. 杨震. 基于综合治理理念的河道整治工程水体处置实例研究. 工程技术研究. 2023(17): 211-213 .
    10. 刘文辉,孙志国. 生物强化应用于河道水体质量提升的工程实践探讨. 皮革制作与环保科技. 2023(20): 185-187 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 79.6 %META: 79.6 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.9 %其他: 16.9 %其他: 0.6 %其他: 0.6 %China: 1.1 %China: 1.1 %Warren Township: 0.7 %Warren Township: 0.7 %上海: 5.9 %上海: 5.9 %东莞: 0.7 %东莞: 0.7 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %乐山: 0.2 %乐山: 0.2 %保定: 1.1 %保定: 1.1 %六安: 0.2 %六安: 0.2 %包头: 0.2 %包头: 0.2 %北京: 2.4 %北京: 2.4 %南京: 1.8 %南京: 1.8 %南宁: 0.4 %南宁: 0.4 %南通: 0.4 %南通: 0.4 %厦门: 0.2 %厦门: 0.2 %台州: 0.7 %台州: 0.7 %合肥: 1.7 %合肥: 1.7 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %大同: 0.4 %大同: 0.4 %天津: 3.5 %天津: 3.5 %太原: 0.4 %太原: 0.4 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.6 %常德: 0.6 %广州: 2.2 %广州: 2.2 %张家口: 0.4 %张家口: 0.4 %徐州: 0.2 %徐州: 0.2 %成都: 1.5 %成都: 1.5 %扬州: 0.2 %扬州: 0.2 %无锡: 0.9 %无锡: 0.9 %昆明: 1.1 %昆明: 1.1 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.4 %朝阳: 0.4 %杭州: 2.0 %杭州: 2.0 %株洲: 0.2 %株洲: 0.2 %武汉: 1.5 %武汉: 1.5 %沈阳: 0.2 %沈阳: 0.2 %法尔肯施泰因: 0.6 %法尔肯施泰因: 0.6 %济南: 0.2 %济南: 0.2 %济源: 0.2 %济源: 0.2 %海口: 0.6 %海口: 0.6 %深圳: 0.6 %深圳: 0.6 %温州: 2.4 %温州: 2.4 %湖州: 0.7 %湖州: 0.7 %漯河: 1.3 %漯河: 1.3 %潍坊: 0.2 %潍坊: 0.2 %珠海: 0.2 %珠海: 0.2 %石家庄: 0.2 %石家庄: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 22.3 %芒廷维尤: 22.3 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 2.0 %芝加哥: 2.0 %苏州: 1.5 %苏州: 1.5 %衡阳: 0.2 %衡阳: 0.2 %西宁: 7.6 %西宁: 7.6 %贵阳: 0.7 %贵阳: 0.7 %赣州: 0.4 %赣州: 0.4 %运城: 1.1 %运城: 1.1 %遵义: 0.2 %遵义: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.7 %重庆: 0.7 %金华: 0.4 %金华: 0.4 %镇江: 0.4 %镇江: 0.4 %长沙: 0.6 %长沙: 0.6 %长治: 0.4 %长治: 0.4 %鞍山: 0.4 %鞍山: 0.4 %黄石: 0.7 %黄石: 0.7 %其他其他ChinaWarren Township上海东莞中山临汾乐山保定六安包头北京南京南宁南通厦门台州合肥咸阳哈尔滨大同天津太原宜昌宣城常州常德广州张家口徐州成都扬州无锡昆明晋城朝阳杭州株洲武汉沈阳法尔肯施泰因济南济源海口深圳温州湖州漯河潍坊珠海石家庄绵阳芒廷维尤芜湖芝加哥苏州衡阳西宁贵阳赣州运城遵义郑州鄂州重庆金华镇江长沙长治鞍山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(0) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return