Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Lichang, LI Zhaoling, CHEN Lei, LIN Ya'nan, GONG Zhiwei, LIN Qingshan, MA Jie, WANG Zongping, GUO Gang. SHORT-TERM EFFECT OF THIOSULFATE ON COMPETITION BETWEEN SULFUR BACTERIA AND GLYCOGEN ACCUMULATING ORGANISMS IN SULFUR-CONTAINING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 26-32. doi: 10.13205/j.hjgc.202308004
Citation: HE Kaijie, HE Youjiang, YANG Xin, CHENG Miaomiao, LI Fuqiang, PENG Yujie, LI Bin. CHARACTERISTICS AND INFLUENCING FACTORS OF ATMOSPHERIC NH3 POLLUTION IN SHIHEZI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 162-170. doi: 10.13205/j.hjgc.202407018

CHARACTERISTICS AND INFLUENCING FACTORS OF ATMOSPHERIC NH3 POLLUTION IN SHIHEZI

doi: 10.13205/j.hjgc.202407018
  • Received Date: 2023-05-15
    Available Online: 2024-12-02
  • Atmospheric ammonia (NH3) has an important impact on the formation of secondary aerosols. To investigate the characteristics of atmospheric NH3 pollution in Shihezi, the atmospheric NH3 concentration was observed continuously from December 2020 to November 2021, and the magnitude level, variation characteristics, and influencing factors of atmospheric NH3 in Shihezi were analyzed, in combination with the characteristics of atmospheric NH3 emissions and the characteristics of concurrent meteorological parameters. The results show that the annual average concentration of atmospheric NH3 in Shihezi was 21.0 μg/m3, the average concentration of atmospheric NH3 in the four seasons ranged from 20.2 μg/m3 to 21.7 μg/m3, with a small seasonal fluctuation. In winter, the main source of atmospheric NH3 in Shihezi was the escape of ammonia during the industrial flue gas denitrification process, and the continuous low boundary layer height and low wind speed in winter led to the deterioration of atmospheric diffusion conditions. The unfavorable diffusion conditions were an important reason for the accumulation of atmospheric NH3 concentration in winter. Increasing the control of ammonia escape during flue gas denitrification was beneficial to reducing the atmospheric NH3 concentration in Shihezi. The diurnal variation of atmospheric NH3 concentration showed a pattern of higher during the day and lower at night in Shihezi in all seasons, with the daily variation of atmospheric NH3 concentration being highest in spring and lowest in winter. The atmospheric NH3 concentrations in spring and winter showed a single-peak pattern, with dual peaks at 12:00 and 16:00, respectively, and summer and autumn atmospheric NH3 concentrations showed a multi-peak pattern, with maximum peaks at 11:00 and 13:00, respectively. Compared with other cities in China, the daytime peak of atmospheric NH3 concentration in Shihezi appeared 1 to 3 hours later. The quantitative evaluation of the influencing factors of atmospheric NH3 concentration by the random forest algorithm showed that the influence of meteorological factors on atmospheric NH3 in the four seasons reached 63.6%, 58.8%, 73.9%, and 64.5%, respectively, and meteorological factors were the main influencing factors of atmospheric NH3 concentration.
  • [1]
    BERGSTRÖM A K, JANSSON M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere[J]. Global Change Biology, 2006, 12(4): 635-643.
    [2]
    CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179): 712-715.
    [3]
    薛文博, 许艳玲, 唐晓龙, 等.中国氨排放对PM2.5污染的影响[J].中国环境科学, 2016, 36(12):3531-3539.
    [4]
    HUANG X, SONG Y, LI M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1).
    [5]
    RENNER E, WOLKE R. Modelling the formation and atmospheric transport of secondary inorganic aerosols with special attention to regions with high ammonia emissions[J]. Atmospheric Environment, 2010, 44(15): 1904-1912.
    [6]
    HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222.
    [7]
    HODAS N, SULLIVAN A P, SKOG K, et al. Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation[J]. Environmental Science & Technology, 2014, 48(19): 11127-11136.
    [8]
    GE B, XU X, MA Z, et al. Role of ammonia on the feedback between awc and inorganic aerosol formation during heavy pollution in the North China Plain[J]. Earth and Space Science, 2019, 6(9): 1675-1693.
    [9]
    ZHAO M, WANG S, TAN J, et al. Variation of urban atmospheric ammonia pollution and its relation with PM2.5 chemical property in winter of Beijing, China[J]. Aerosol and Air Quality Research, 2016, 16(6): 1378-1389.
    [10]
    PARK J, KIM E, OH S, et al. Contributions of ammonia to high concentrations of PM2.5 in an Urban Area[J]. Atmosphere, 2021, 12(12): 1676.
    [11]
    邵生成, 常运华, 曹芳, 等.南京城市大气氨-铵的高频演化及其气粒转化机制[J].环境科学, 2019, 40(10):4355-4363.
    [12]
    谭静瑶, 王丽涛, 刘振通, 等.邯郸市NH3污染特征及其在PM2.5形成中的作用[J].环境化学, 2021, 40(7):2035-2046.
    [13]
    LV S, WANG F, WU C, et al. Gas-to-aerosol phase partitioning of atmospheric water-soluble organic compounds at a rural site in China: an enhancing effect of NH3 on SOA formation[J]. Environmental Science & Technology, 2022, 56(7): 3915-3924.
    [14]
    GU B, ZHANG L, van DINGENEN R, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J]. Science, 2021, 374(6568): 758.
    [15]
    LIU Z, ZHOU M, CHEN Y, et al. The nonlinear response of fine particulate matter pollution to ammonia emission reductions in North China[J]. Environmental Research Letters, 2021, 16(3): 034014.
    [16]
    许艳玲, 薛文博, 雷宇, 等.中国氨减排对控制PM2.5污染的敏感性研究[J].中国环境科学, 2017, 37(7):2482-2491.
    [17]
    刘学军, 沙志鹏, 宋宇, 等.我国大气氨的排放特征、减排技术与政策建议[J].环境科学研究, 2021, 34(1):149-157.
    [18]
    孟德友.农业及城市典型挥发源氨排放和氨态氮同位素源谱特征[D]. 南京:南京信息工程大学, 2021.
    [19]
    程龙, 郭秀锐, 程水源, 等.京津冀农业源氨排放对PM2.5的影响[J].中国环境科学, 2018, 38(4):1579-1588.
    [20]
    ZENG Y, TIAN S, PAN Y. Revealing the sources of atmospheric ammonia: a review[J]. Current Pollution Reports, 2018, 4(3): 189-197.
    [21]
    PU W, MA Z, COLLETT JR J L, et al. Regional transport and urban emissions are important ammonia contributors in Beijing, China[J]. Environmental Pollution, 2020, 265: 115062.
    [22]
    GU M, PAN Y, WALTERS W W, et al. Vehicular emissions enhanced ammonia concentrations in winter mornings: insights from diurnal nitrogen isotopic signatures[J]. Environmental Science & Technology, 2022, 56(3): 1578-1585.
    [23]
    CHANG Y, ZOU Z, DENG C, et al. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai[J]. Atmospheric Chemistry and Physics, 2016, 16(5): 3577-3594.
    [24]
    PERRINO C, CATRAMBONE M, DI BUCCHIANICO A D M, et al. Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions[J]. Atmospheric Environment, 2002, 36(34): 5385-5394.
    [25]
    何凯杰, 李刚, 程苗苗, 等.天山北坡典型工业城市冬季大气铵盐污染特征及其赋存形式[J].环境科学研究:1-13.
    [26]
    HE Y, PAN Y, ZHANG G, et al. Tracking ammonia morning peak, sources and transport with 1 Hz measurements at a rural site in North China Plain[J]. Atmospheric Environment, 2020, 235.
    [27]
    MARTIN N A, FERRACCI V, CASSIDY N, et al. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures[J]. Applied Physics B, 2016, 122: 1-11.
    [28]
    VON BOBRUTZKI K, BRABAN C, FAMULARI D, et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques[J]. Atmospheric Measurement Techniques, 2010, 3(1): 91-112.
    [29]
    杨欣, 何友江, 廉涵阳, 等.天山北坡区域大气污染特征及冬季重污染成因分析:以石河子市为例[J].环境工程技术学报, 2023, 13(2):483-490.
    [30]
    环境保护部. 大气氨源排放清单编制技术指南(试行)[Z].北京:环境保护部, 2014-08-28[2021-04

    -07].
    [31]
    徐发昭, 李净, 褚馨德, 等.基于MODIS数据与多机器学习法的日PM2.5模拟研究[J].中国环境科学, 2022, 42(6):2523-2529.
    [32]
    HU X, BELLE J H, MENG X, et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach[J]. Environmental Science & Technology, 2017, 51(12): 6936-6944.
    [33]
    BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32.
    [34]
    PAN Y, TIAN S, LIU D, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 2016, 50(15): 8049-8056.
    [35]
    WU C, WANG G, LI J, et al. Non-agricultural sources dominate the atmospheric NH3 in Xi'an, a megacity in the semi-arid region of China[J]. Science of the Total Environment, 2020, 722: 137756.
    [36]
    鲁胜坤, 晁娜, 陈金媛, 等.浙江省2013—2020年人为源氨排放清单[J].中国环境科学, 2022, 42(10):4525-4536.
    [37]
    计尧, 王琛, 卢轩, 等.郑州市大气氨排放清单及驱动力分析[J].环境科学, 2021, 42(11):5220-5227.
    [38]
    李香, 吴水平, 姜炳棋, 等.2015—2020年厦漳泉地区大气氨排放清单及分布特征[J].环境科学, 2022, 43(11):4914-4923.
    [39]
    邵蕊, 吕建华, 徐琬莹, 等.青岛市人为源氨排放清单及分布特征[J].环境科学学报, 2021, 41(11):4449-4458.
    [40]
    赵旻江.北京地区大气氨污染特征及其对细颗粒物的影响[D]. 北京:清华大学, 2017.
    [41]
    许稳, 金鑫, 罗少辉, 等.西宁近郊大气氮干湿沉降研究[J].环境科学, 2017, 38(4):1279-88.
    [42]
    刘元隆, 吴水平.福建大气氨的浓度特征[C]//第十二届全国气溶胶会议暨第十三届海峡两岸气溶胶技术研讨会, 中国重庆, 2015.
    [43]
    ZHANG Y, TANG A, WANG D, et al. The vertical variability of ammonia in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 2018, 18(22): 16385-16398.
    [44]
    张国贤, 胡仁志, 谢品华, 等.基于离轴积分腔输出光谱对泰州大气NH3浓度观测与分析[J].光谱学与光谱分析, 2021, 41(2):360-367.
    [45]
    吕雪梅.典型排放源大气活性氮浓度和氨同位素特征及城市大气氨来源解析[D]. 济南:山东大学, 2020.
    [46]
    兰子濡, 林伟立.北京市NH3的长期变化特征研究[C]//中国环境科学学会2022年科学技术年会, 中国江西南昌, 2022.
    [47]
    BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20: 8092-8131.
    [48]
    丁萌萌, 周健楠, 刘保献, 等.2015年北京城区大气PM2.5中NH+4、NO-3、SO2-4及前体气体的污染特征[J].环境科学, 2017, 38(4):1307-1316.
    [49]
    张众志, 魏雪峰, 苗云阁, 等.新疆天山北坡低层大气稀释扩散能力的季节性差异和量化研究[J].环境科学研究, 2022, 35(7):1564-1572.
    [50]
    喻鹏.石河子垦区春播工作拉开序幕[Z].石河子零距离, 2019.03.27.
    [51]
    新疆石河子市人民政府.一四四团召开粮食夏收工作现场会[Z].2023.07.10.
    [52]
    冯炎鹏, 张军科, 黄小娟, 等.成都夏冬季PM2.5中水溶性无机离子污染特征[J].环境科学, 2020, 41(7):3012-3020.
    [53]
    马儒龙, 王章玮, 张晓山.城市绿化林中大气氨浓度垂直分布观测[J].环境化学, 2021, 40(7):2028-2034.
    [54]
    吴佳伟, 王祖武, 陈楠, 等.军运会前后武汉市大气氨-铵气/粒转化监测研究[J].环境科学与技术, 2020, 43(5):132-138.
    [55]
    TENG X, HU Q, ZHANG L, et al. Identification of major sources of atmospheric NH3 in an urban environment in Northern China during wintertime[J]. Environmental Science & Technology, 2017, 51(12): 6839-6848.
    [56]
    HU Q, ZHANG L, EVANS G J, et al. Variability of atmospheric ammonia related to potential emission sources in downtown Toronto, Canada[J]. Atmospheric Environment, 2014, 99: 365-373.
    [57]
    SUTTON M A, REIS S, RIDDICK S N, et al. Towards a climate-dependent paradigm of ammonia emission and deposition[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621).
    [58]
    MENG Z, LIN W, ZHANG R, et al. Summertime ambient ammonia and its effects on ammonium aerosol in urban Beijing, China[J]. Science of the Total Environment, 2017, 579: 1521-1530.
    [59]
    HU M, WU Z, SLANINA J, et al. Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China[J]. Atmospheric Environment, 2008, 42(25): 6310-6320.
  • Relative Articles

  • Cited by

    Periodical cited type(6)

    1. 甄永康,顾亚兰,王梦芝,贡玉清,李佩真,徐俊. 养殖高铜排放与治理现状及其微生物利用研究进展. 中国畜牧杂志. 2022(01): 56-62 .
    2. 杨韬,陈靖宇,孙晓霜,皇甫卓曦,余江. 磁性椰壳对土壤淋洗废液中As(Ⅲ)的吸附性能分析. 环境工程. 2022(01): 86-93 . 本站查看
    3. 孙林静,毕韶丹,韩兴威. 纤维素/壳聚糖复合微球的制备及对铜(Ⅱ)的吸附性能研究. 电镀与精饰. 2022(05): 21-27 .
    4. 郭志伟,赵宝龙,郑志宏,洪飞宇,辛思远,王晓伟,王兴肖,张珍珍,牛芳,李国亭. 碳化改性硅藻土对四环素的吸附. 环境工程. 2022(05): 44-52 . 本站查看
    5. 李雪梅,张博,赛东舜,贺庆豪. Fe_3O_4磁性纳米材料制备及在重金属去除中的应用. 山东建筑大学学报. 2022(03): 109-117 .
    6. 秦娟,杨尚文,鲍雨晴,吴妤婕,蔡琳,文倩. 钙铝黄长石陶粒改性及处理含锰废水效能. 环境工程. 2022(08): 47-54 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.5 %FULLTEXT: 12.5 %META: 83.3 %META: 83.3 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 59.7 %其他: 59.7 %上海: 2.8 %上海: 2.8 %北京: 1.4 %北京: 1.4 %南京: 2.8 %南京: 2.8 %嘉兴: 1.4 %嘉兴: 1.4 %天津: 2.8 %天津: 2.8 %宣城: 1.4 %宣城: 1.4 %广州: 1.4 %广州: 1.4 %张家口: 2.8 %张家口: 2.8 %杭州: 2.8 %杭州: 2.8 %漯河: 1.4 %漯河: 1.4 %芒廷维尤: 11.1 %芒廷维尤: 11.1 %西宁: 4.2 %西宁: 4.2 %贵阳: 1.4 %贵阳: 1.4 %运城: 1.4 %运城: 1.4 %长沙: 1.4 %长沙: 1.4 %其他上海北京南京嘉兴天津宣城广州张家口杭州漯河芒廷维尤西宁贵阳运城长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (53) PDF downloads(1) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return