Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
QUAN Weici, YANG Kai, KAN Simeng, SUN Yelong, TIAN Yinghui, WAN Dong, ZHENG Lei, CHENG Hongguang. CHARACTERISTICS AND RESOURCE UTILIZATION OF DAMMED LAKE HYDROSTATIC SEDIMENTS IN UPSTREAM OF JINSHA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 1-7. doi: 10.13205/j.hjgc.202408001
Citation: QUAN Weici, YANG Kai, KAN Simeng, SUN Yelong, TIAN Yinghui, WAN Dong, ZHENG Lei, CHENG Hongguang. CHARACTERISTICS AND RESOURCE UTILIZATION OF DAMMED LAKE HYDROSTATIC SEDIMENTS IN UPSTREAM OF JINSHA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 1-7. doi: 10.13205/j.hjgc.202408001

CHARACTERISTICS AND RESOURCE UTILIZATION OF DAMMED LAKE HYDROSTATIC SEDIMENTS IN UPSTREAM OF JINSHA RIVER

doi: 10.13205/j.hjgc.202408001
  • Received Date: 2023-09-01
    Available Online: 2024-12-02
  • To address the challenge of managing substantial quantities of dredged sediments during the construction of hydropower stations, we collected hydrostatic sediment samples from the overburden riverbed at the dam site of Lawa Hydropower Station in the upstream region of Jinsha River. The sediment samples underwent analysis to determine their physicochemical properties and heavy metals concentrations. The contamination levels of heavy metals in the sediment and their associated ecological risk were assessed, followed by a discussion on the feasible resource utilization of the sediments. The findings revealed that the pH values of the sediment samples ranged from 7.77 to 7.91, indicating weak alkalinity. The coefficient uniformity (Cμ) exceeded 10, suggesting diverse particle fractions and continuous grading within the sediment. The sediment texture was classified as loam, including sandy loam and silty sandy loam. The organic matter content in sediment samples ranged from 1.33% to 1.86%, which was at a low level, indicating limited nutrient availability. The geoaccumulation index (Igeo) indicated that the sediment samples were not contaminated by heavy metals. According to the potential ecological risk index, only Cd in the sediment sample collected from prospecting line Ⅰ posed a moderate potential ecological risk. The dammed lake hydrostatic sediments can serve as the substituted topsoil capping material for landscaping, or building materials. To enhance the fertility of the sediment capping layer due to its inherent lack of organic matter, it’s suggested to be incorporated with local-sourced municipal sewage sludge, kitchen waste, livestock, and poultry manures along with their composts, which are rich in both organic matter and nutrients. The compressive and flexural strengths of sediment-based building materials can be improved through incorporating coal cinder, cement, or other solidification technologies.
  • loading
  • [1]
    温学发, 张心昱, 魏杰, 等. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
    [2]
    范成新, 刘敏, 王圣瑞, 等. 近20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
    [3]
    LEERMAKERS M, MBACHOU B E, HUSSON A, et al. An alternative sequential extraction scheme for the determination of trace elements in ferrihydrite rich sediments[J]. Talanta, 2019(199): 80-88.
    [4]
    ANGER B, MOULIN I, COMMENE J, et al. Fine-grained reservoir sediments: an interesting alternative raw material for Portland cement clinker production[J]. European Journal of Environmental and Civil Engineering, 2017,23 (8): 957-970.
    [5]
    MANAP N, BEDALI R R, SANDIRASEGARAN K, et al. Strength of brick made from dredged sediments (2016). Strength of brick made from dredged sediments[J]. Jurnal Teknologi, 2015, 78(7-3):7-13.
    [6]
    HAQUE M M, BELTON B, ALAM M M, et al. Reuse of fish pond sediments as fertilizer for fodder grass production in Bangladesh: potential for sustainable intensification and improved nutrition[J]. Agriculture Ecosystems and Environment, 2016(216): 226-236.
    [7]
    严莲英. 阿哈水库疏浚底泥在园艺植物种植上的应用研究[D]. 贵阳: 贵州大学, 2017.
    [8]
    胡如意, 周佩佩, 梅琨, 等.清淤底泥资源化利用可行性研究:以浙江温瑞塘河为例[J]. 中国农村水利水电, 2020(10): 121-125,130.
    [9]
    KOU R T, GUO M Z, HAN L, et al. Recycling sediment, calcium carbide slag and ground granulated blast-furnace slag into novel and sustainable cementitious binder for production of eco-friendly mortar[J]. Construction and Building Materials, 2021, 305:124772.
    [10]
    雷颖, 高德彬, 马学通, 等.灞河河道疏浚底泥固化力学特性试验研究[J]. 安全与环境工程, 2022, 29(1): 183-188.
    [11]
    郑少辉, 于同生, 章荣军, 等. 养护压力对水泥固化高含水率淤泥强度的影响[J]. 土木工程与管理学报, 2018, 35(5): 115-121

    ,133.
    [12]
    SNELLINGS R, CIZER Ö, HORCKMANS L, et al. Properties and pozzolanic reactivity of flash calcined dredging sediments[J]. Applied Clay Science, 2016(129): 35-39.
    [13]
    魏佳明, 张晓艺, 李婉, 等. 湿地清淤底泥资源化处置现状与前景[J]. 湿地科学与管理, 2019, 15(2): 66-69.
    [14]
    蒋益, 庄杨, 徐焯俊, 等.疏浚底泥资源化利用前景分析[J]. 陕西水利, 2022, (4): 175-176,179.
    [15]
    中华人民共和国农业部. 土壤检测.第2部分:土壤pH的测定:NY/T 1121.2—2006[S].北京:中国标准出版社,2016.
    [16]
    中华人民共和国农业部. 土壤检测.第6部分:土壤有机质的测定:NY/T 1121.6—2006[S].北京:中国标准出版社,2016.
    [17]
    生态环境部. 土壤 粒度的测定 吸液管法和比重计法:HJ 1068—2019[S].北京:中国标准出版社,2019.
    [18]
    TUREKIAN K K, WEDEPOHL K H. Distribution of the elements in some major units of the earth's crust[J]. Geological Society of America Bulletin, 1961, 72(2):175-192.
    [19]
    YANG K, STEPHEN R C. Contemporary sources and levels of heavy metal contamination in urban soil of Broken Hill, Australia after ad hoc land remediation[J]. International Journal of Mining, Reclamation and Environment, 2016, 32(1):18-34.
    [20]
    FÖRSTNER U, AHLF W, CALMANO W, et al. Sediment criteria development: contributions from environmental geochemistry to water quality management[J]. Environmental Geology, 1990, 53(2): 311-338.
    [21]
    冯文, 吴高蓉, 滕倩, 等. 海口市美舍河沉积物分析评价及资源化利用分析[C]//2019中国环境科学学会科学技术年会论文集(第二卷), 2019: 91-98.
    [22]
    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008(2): 112-115.
    [23]
    史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2): 234-251.
    [24]
    程志中, 谢学锦, 潘含江, 等. 中国南方地区水系沉积物中元素丰度[J]. 地学前缘, 2011, 18(5): 289-295.
    [25]
    任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术[M].北京:地质出版社,1998:1-138.
    [26]
    余慧娟, 许士国, 朱林. 水库沉积物资源化利用基础研究:以碧流河水库大堡库区为例[J]. 农业环境科学学报, 2018, 37(9): 1977-1985.
    [27]
    张生, 梁文, 杨力鹏, 等. 乌梁素海底泥沉积物资源化利用初步分析[J]. 环境化学, 2012, 31(3): 308-314.
    [28]
    杨守业, 李超, 王中波,等. 现代长江沉积物地球化学组成的不均一性与物源示踪[J].第四纪研究, 2013, 33(4): 645-655.
    [29]
    郑植仪. 土壤学[M]. 广州: 广州中山大学农科学院, 1937.
    [30]
    周伟, 王文杰, 张波, 等. 长春城市森林绿地土壤肥力评价[J]. 生态学报, 2017, 37(4): 1211-1220.
    [31]
    易文利, 王圣瑞, 杨苏文,等. 长江中下游浅水湖泊沉积物腐殖质组分赋存特征[J]. 湖泊科学, 2011, 23(1): 21-28.
    [32]
    赵祖军. 金沙江上游底泥重金属污染及潜在生态风险评价[J]. 环境科学导刊, 2013, 32(1): 91-94.
    [33]
    SIMPSON S, BATLEY G. Sediment Quality Assessment: A Practical Guide[M]. 2nd Edition. CSIRO Publishing, 2016.
    [34]
    黄修保, 严如忠, 龚敏. 长江流域四川段Cd异常源追踪[J]. 成都理工大学学报(自然科学版), 2010, 37(1): 103-109.
    [35]
    杨子轩, 吴文卫, 翟德勤, 等. 重金属污染底泥安全处置与资源化利用技术研究[J]. 环境工程, 2019,37(增刊): 356-364.
    [36]
    谢正苗. 镉铅锌污染对红壤中微生物生物量碳氮磷的影响[J]. 植物营养与肥料学报, 2000, 6(1): 69-74.
    [37]
    刘旭. 乌梁素海底泥农田利用可行性分析及其环境风险评价[D]. 呼和浩特: 内蒙古农业大学, 2013.
    [38]
    NASCIMENTO S F, KURZWEIL H, WRUSS W, et al. Cadmium in the Amazonian Guajará Estuary: distribution and remobilization[J]. Environmental Pollution, 2006, 140(1):29-42.
    [39]
    AOUAD G, LABOUDIGUE A, GINEYS N, et al. Dredged sediments used as novel supply of raw material to produce Portland cement clinker[J]. Cement and Concrete Composites, 2012,34: 788-793.
    [40]
    SABINO D G, F TODARO, MESTO E, et al. Recycling contaminated marine sediments as filling materials by pilot scale stabilization/solidification with lime, organoclay and activated carbon[J]. Journal of Cleaner Production, 2020, 122416.
    [41]
    HE Z F, LI F L, SALVATORE D, et al. Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: distribution, speciation and environmental risks[J]. Journal of Geochemical Exploration, 2018, 198:18-28.
    [42]
    何中发, 杨守业, 赵宝成, 等. 长江口地区近1500年以来沉积物重金属含量变化及其对流域环境响应[J]. 海洋地质与第四纪地质, 2019, 39(2): 21-30.
    [43]
    ANBUSELVAN N, SENTHIL N D, SRIDHARAN M. Heavy metal assessment in surface sediments off Coromandel Coast of India: implication on marine pollution[J]. Marine Pollution Bulletin, 2018, 131(Pt A):712-716.
    [44]
    SU D C, HU Y F, SONG C W, et al. Physicochemical properties of Guanting reservoir sediment and its land application[J]. Environmental Science, 2007, 1319-1323.
    [45]
    丛玮玮, 陈永林, 陈小锦, 等. 利用蚯蚓粪改良太湖底泥的效果[J]. 江苏农业科学, 2016, 44(10): 475-478.
    [46]
    蒋士磊, 黄显怀. 重金属污染底泥堆肥改良及盆栽试验研究[J]. 工业用水与废水, 2015, 46(2): 78-82.
    [47]
    KIANI M, RAAVE H, SIMOJOKI A, et al. Recycling lake sediment to agriculture: effects on plant growth, nutrient availability, and leaching[J]. Science of the Total Environment, 2020, 753: 141984.
    [48]
    MATTEI P, PASTORELLI R, RAMI G, et al. Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure[J]. Journal of Hazardous Materials, 2017, 333:144-153.
    [49]
    BRAGA B B, RENATO A, BROSINSKY A, et al. From waste to resource: cost-benefit analysis of reservoir sediment reuse for soil fertilization in a semiarid catchment[J]. Science of the Total Environment, 2019, 670: 158-169.
    [50]
    邵玉芳, 何超, 楼庆庆. 西湖疏浚淤泥的固化试验[J]. 江苏大学学报(自然科学版), 2007, 28(5): 442-445.
    [51]
    韩超, 柏彬, 张献蒙, 等. 固化流态底泥填筑路堤内土体抗剪强度空间变异特性及其影响[J]. 土木工程与管理学报, 2022, 39(1): 88-93.
    [52]
    WANG L, CHEN L, CHO D W, et al. Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment[J]. Journal of Hazardous Materials, 2019, 365: 695-706.
    [53]
    MIRAOUI M, ZENTAR R, ABRIAK N. Road material basis in dredged sediment and basic oxygen furnace steel slag[J]. Construction and Building Materials, 2012, 30: 209-319.
    [54]
    王萍, 郑光和, 邵菁, 等. 利用黄河泥沙制作防汛备防石的试验研究[J]. 人民黄河, 2012, 34(5): 12-13.
    [55]
    冷元宝, 宋万增, 刘慧. 黄河泥沙资源利用的辩证思考[J]. 人民黄河, 2012, 34(3): 1-3

    ,10.
    [56]
    宋迎宾, 康延铭, 马子普, 等. 黄河泥沙基人造防汛石材移动式生产工艺研究[J]. 人民黄河, 2021, 43(增刊2): 23-26.
    [57]
    LIU J, LIU R, HE Z, et al. Preparation and microstructure of green ceramsite made from sewage sludge[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2012, 27: 149-153.
    [58]
    QI Y F, DAI B B, HE S B, et al. Effect of chemical constituents of oxytetracycline mycelia residue and dredged sediments on characteristics of ultra-lightweight ceramsite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 225-232.
    [59]
    颜紫云, 刘鸿雁, 王雨生, 等. 重金属在污泥长期施用土壤-作物系统的累积状况及淋溶特性[J]. 安全与环境学报, 2014, 14(2): 254-259.
    [60]
    王喜艳, 聂振江. 施用污泥对土壤中重金属含量的影响[J]. 中国农学通报, 2008, 24(12): 432-435.
    [61]
    尹朝援. 市政污泥改良盐碱地研究[J]. 环境影响评价, 2022, 44(2): 63-66

    ,72.
    [62]
    许继飞, 康振中, 赵吉, 等. 煤基固废与牲畜粪便固态发酵基质改良沙土的研究[J]. 环境科学与技术, 2017, 40(7): 160-166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (40) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return